docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel linux/amd64

docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel - 国内下载镜像源 浏览次数:26 安全受验证的发布者-Pytorch

PyTorch是一个深度学习框架,旨在简化机器学习算法的实现和部署。该镜像提供了一个基于Python 3.x的环境,可以用于快速启动和测试PyTorch项目。

源镜像 docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel
镜像ID sha256:5e7815e32cbc353587f1452afaf1da11cf257b93ecb8322600809f4769c6779a
镜像TAG 2.0.0-cuda11.7-cudnn8-devel
大小 13.10GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /workspace
OS/平台 linux/amd64
浏览量 26 次
贡献者
镜像创建 2023-03-20T11:08:45.700884784-07:00
同步时间 2025-01-11 00:22
更新时间 2025-01-14 20:45
环境变量
PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=11.7 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511 NV_CUDA_CUDART_VERSION=11.7.60-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-7 CUDA_VERSION=11.7.0 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=11.7.0-1 NV_NVTX_VERSION=11.7.50-1 NV_LIBNPP_VERSION=11.7.3.21-1 NV_LIBNPP_PACKAGE=libnpp-11-7=11.7.3.21-1 NV_LIBCUSPARSE_VERSION=11.7.3.50-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-7 NV_LIBCUBLAS_VERSION=11.10.1.25-1 NV_LIBCUBLAS_PACKAGE=libcublas-11-7=11.10.1.25-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.13.4-1 NCCL_VERSION=2.13.4-1 NV_LIBNCCL_PACKAGE=libnccl2=2.13.4-1+cuda11.7 NVIDIA_PRODUCT_NAME=CUDA NVIDIA_CUDA_END_OF_LIFE=1 NV_CUDA_CUDART_DEV_VERSION=11.7.60-1 NV_NVML_DEV_VERSION=11.7.50-1 NV_LIBCUSPARSE_DEV_VERSION=11.7.3.50-1 NV_LIBNPP_DEV_VERSION=11.7.3.21-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-7=11.7.3.21-1 NV_LIBCUBLAS_DEV_VERSION=11.10.1.25-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-7 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-7=11.10.1.25-1 NV_NVPROF_VERSION=11.7.50-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-7=11.7.50-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.13.4-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.13.4-1+cuda11.7 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.5.0.96 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.5.0.96-1+cuda11.7 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.5.0.96-1+cuda11.7 PYTORCH_VERSION=v2.0.0
镜像标签
8.5.0.96: com.nvidia.cudnn.version nvidia_driver: com.nvidia.volumes.needed NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer
镜像安全扫描 查看Trivy扫描报告

系统OS: ubuntu 18.04 扫描引擎: Trivy 扫描时间: 2025-01-11 00:25

低危漏洞:47 中危漏洞:203 高危漏洞:26 严重漏洞:1

Docker拉取命令 无权限下载?点我修复

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel  docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel  docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel

Shell快速替换命令

sed -i 's#pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel  docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel  docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel'

镜像构建历史


# 2023-03-21 02:08:45  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2023-03-21 02:08:45  0.00B 设置环境变量 PYTORCH_VERSION
ENV PYTORCH_VERSION=v2.0.0
                        
# 2023-03-21 02:08:45  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-03-21 02:08:45  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-03-21 02:08:45  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-03-21 02:08:45  0.00B 设置环境变量 PATH
ENV PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-03-21 02:08:45  0.00B 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=v2.0.0 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=11.7.0 /bin/sh -c rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-03-21 02:08:45  0.00B 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=v2.0.0 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=11.7.0 /bin/sh -c if test -n "${TRITON_VERSION}" -a "${TARGETPLATFORM}" != "linux/arm64"; then         apt install -y --no-install-recommends gcc;     fi # buildkit
                        
# 2023-03-21 02:08:44  6.30GB 复制新文件或目录到容器中
COPY /opt/conda /opt/conda # buildkit
                        
# 2023-03-21 02:04:03  49.18MB 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=v2.0.0 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=11.7.0 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends         ca-certificates         libjpeg-dev         libpng-dev # buildkit
                        
# 2023-03-21 02:04:03  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver
                        
# 2023-03-21 02:04:03  0.00B 定义构建参数
ARG CUDA_VERSION
                        
# 2023-03-21 02:04:03  0.00B 定义构建参数
ARG TARGETPLATFORM
                        
# 2023-03-21 02:04:03  0.00B 定义构建参数
ARG TRITON_VERSION
                        
# 2023-03-21 02:04:03  0.00B 定义构建参数
ARG PYTORCH_VERSION
                        
# 2022-12-17 08:57:55  1.94GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-12-17 08:57:55  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.5.0.96
                        
# 2022-12-17 08:57:55  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-12-17 08:57:55  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-12-17 08:57:55  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.5.0.96-1+cuda11.7
                        
# 2022-12-17 08:57:55  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.5.0.96-1+cuda11.7
                        
# 2022-12-17 08:57:55  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2022-12-17 08:57:55  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.5.0.96
                        
# 2022-12-15 04:02:14  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2022-12-15 04:02:14  369.64KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2022-12-15 04:02:12  2.78GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-dev-11-7=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-11-7=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-11-7=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-11-7=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-11-7=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-11-7=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-12-15 04:02:12  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-12-15 04:02:12  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-12-15 04:02:12  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.13.4-1+cuda11.7
                        
# 2022-12-15 04:02:12  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.13.4-1
                        
# 2022-12-15 04:02:12  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.13.4-1
                        
# 2022-12-15 04:02:12  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2022-12-15 04:02:12  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-7=11.7.50-1
                        
# 2022-12-15 04:02:12  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=11.7.50-1
                        
# 2022-12-15 04:02:12  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-7=11.10.1.25-1
                        
# 2022-12-15 04:02:12  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-7
                        
# 2022-12-15 04:02:12  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=11.10.1.25-1
                        
# 2022-12-15 04:02:12  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-7=11.7.3.21-1
                        
# 2022-12-15 04:02:12  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=11.7.3.21-1
                        
# 2022-12-15 04:02:12  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=11.7.3.50-1
                        
# 2022-12-15 04:02:12  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=11.7.50-1
                        
# 2022-12-15 04:02:12  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=11.7.60-1
                        
# 2022-12-15 04:02:12  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.7.0-1
                        
# 2022-12-15 03:58:47  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2022-12-15 03:58:47  0.00B 设置环境变量 NVIDIA_CUDA_END_OF_LIFE
ENV NVIDIA_CUDA_END_OF_LIFE=1
                        
# 2022-12-15 03:58:47  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2022-12-15 03:58:47  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2022-12-15 03:58:47  3.04KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2022-12-15 03:58:47  256.97KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2022-12-15 03:58:47  1.82GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-11-7=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-11-7=${NV_NVTX_VERSION}     libcusparse-11-7=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-12-15 03:58:47  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-12-15 03:58:47  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-12-15 03:58:47  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.13.4-1+cuda11.7
                        
# 2022-12-15 03:58:47  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.13.4-1
                        
# 2022-12-15 03:58:47  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.13.4-1
                        
# 2022-12-15 03:58:47  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2022-12-15 03:58:47  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-11-7=11.10.1.25-1
                        
# 2022-12-15 03:58:47  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=11.10.1.25-1
                        
# 2022-12-15 03:58:47  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-7
                        
# 2022-12-15 03:58:47  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=11.7.3.50-1
                        
# 2022-12-15 03:58:47  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-11-7=11.7.3.21-1
                        
# 2022-12-15 03:58:47  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=11.7.3.21-1
                        
# 2022-12-15 03:58:47  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=11.7.50-1
                        
# 2022-12-15 03:58:47  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.7.0-1
                        
# 2022-12-15 03:56:36  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2022-12-15 03:56:36  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2022-12-15 03:56:36  16.05KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2022-12-15 03:56:36  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2022-12-15 03:56:36  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2022-12-15 03:56:36  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2022-12-15 03:56:35  119.70MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-11-7=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-12-15 03:55:39  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=11.7.0
                        
# 2022-12-15 03:55:39  16.52MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/${NVARCH}/3bf863cc.pub | apt-key add - &&     echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/${NVARCH} /" > /etc/apt/sources.list.d/cuda.list &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-12-15 03:55:39  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-12-15 03:55:39  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-12-15 03:55:39  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-7
                        
# 2022-12-15 03:55:39  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=11.7.60-1
                        
# 2022-12-15 03:55:39  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=11.7 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511
                        
# 2022-12-15 03:55:39  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2022-12-09 09:20:12  0.00B 
/bin/sh -c #(nop)  CMD ["bash"]
                        
# 2022-12-09 09:20:11  63.15MB 
/bin/sh -c #(nop) ADD file:3c88cea17de40599dc8b8da90adc8439635066835e930f9573ec6cc856c5c096 in / 
                        
                    

镜像信息

{
    "Id": "sha256:5e7815e32cbc353587f1452afaf1da11cf257b93ecb8322600809f4769c6779a",
    "RepoTags": [
        "pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel"
    ],
    "RepoDigests": [
        "pytorch/pytorch@sha256:96ccb2997a131f2455d70fb78dbb284bafe4529aaf265e344bae932c8b32b2a4",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch@sha256:96ccb2997a131f2455d70fb78dbb284bafe4529aaf265e344bae932c8b32b2a4"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2023-03-20T11:08:45.700884784-07:00",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=11.7 brand=tesla,driver\u003e=450,driver\u003c451 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=510,driver\u003c511 brand=unknown,driver\u003e=510,driver\u003c511 brand=nvidia,driver\u003e=510,driver\u003c511 brand=nvidiartx,driver\u003e=510,driver\u003c511 brand=quadro,driver\u003e=510,driver\u003c511 brand=quadrortx,driver\u003e=510,driver\u003c511 brand=titan,driver\u003e=510,driver\u003c511 brand=titanrtx,driver\u003e=510,driver\u003c511 brand=geforce,driver\u003e=510,driver\u003c511 brand=geforcertx,driver\u003e=510,driver\u003c511",
            "NV_CUDA_CUDART_VERSION=11.7.60-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-7",
            "CUDA_VERSION=11.7.0",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=11.7.0-1",
            "NV_NVTX_VERSION=11.7.50-1",
            "NV_LIBNPP_VERSION=11.7.3.21-1",
            "NV_LIBNPP_PACKAGE=libnpp-11-7=11.7.3.21-1",
            "NV_LIBCUSPARSE_VERSION=11.7.3.50-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-7",
            "NV_LIBCUBLAS_VERSION=11.10.1.25-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-11-7=11.10.1.25-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.13.4-1",
            "NCCL_VERSION=2.13.4-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.13.4-1+cuda11.7",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NVIDIA_CUDA_END_OF_LIFE=1",
            "NV_CUDA_CUDART_DEV_VERSION=11.7.60-1",
            "NV_NVML_DEV_VERSION=11.7.50-1",
            "NV_LIBCUSPARSE_DEV_VERSION=11.7.3.50-1",
            "NV_LIBNPP_DEV_VERSION=11.7.3.21-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-7=11.7.3.21-1",
            "NV_LIBCUBLAS_DEV_VERSION=11.10.1.25-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-7",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-7=11.10.1.25-1",
            "NV_NVPROF_VERSION=11.7.50-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-7=11.7.50-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.13.4-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.13.4-1+cuda11.7",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.5.0.96",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.5.0.96-1+cuda11.7",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.5.0.96-1+cuda11.7",
            "PYTORCH_VERSION=v2.0.0"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.5.0.96",
            "com.nvidia.volumes.needed": "nvidia_driver",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 13095309159,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/4bd2a9cc31df5509d0e911dab1a9e22ff55da62dbbf538fbc64acf90312a6de5/diff:/var/lib/docker/overlay2/17dbef6e33543162a3eac24d3f573e4e3693c86892e46ccc5e4fe428275db350/diff:/var/lib/docker/overlay2/df293f2da723d775291db63167db37eefbf0bc8c37fb9be2ea16f32434aebb86/diff:/var/lib/docker/overlay2/913fa70df56ca1fbd17ee4ad16a422ff83bf73b9905bc0fca1f9b3af4c467268/diff:/var/lib/docker/overlay2/5c59e00da129bf6a26f8cf526b33d243795570923434d6d4b21237a878c07955/diff:/var/lib/docker/overlay2/20777602165e2b8c2b2460fa331e8044cb5ccc5d1591684560c08581a0c287fb/diff:/var/lib/docker/overlay2/f42171483b95ddc8d66dddfb33a8013eb280fe78003ba621f2d8542043bdf412/diff:/var/lib/docker/overlay2/99fb2c8a3352be542981ad6996822840bab121bbe07203abbc33fcc58e1b7b00/diff:/var/lib/docker/overlay2/162ac95e5c366c0488347764c8014470a7dae2e692c951f7ce5b6f230002f170/diff:/var/lib/docker/overlay2/5d825d8a91fbd86ec51efabe34fb57e3d86e026c6d816aa0926cbdd6b32d7fcf/diff:/var/lib/docker/overlay2/32ac0c591588dbf28fc0fdb1c4aa274d735d00f811ff6f79f5836b110bd279b9/diff:/var/lib/docker/overlay2/d3a92ce5204fc1c1ff87c510293d712be12d7958ccaab8824a00550e7d03540d/diff:/var/lib/docker/overlay2/97e0a428112be3387d35f9355571e43b74cf0896be4eb33dc4174fdfd7dd9185/diff:/var/lib/docker/overlay2/166451d1547ff5ba4d08620b09c208d7e1e1a12d605969ac1ce043e868509a05/diff:/var/lib/docker/overlay2/98cb5bea59e6243b3a05f333f184457487f56f5b83e3819cc381b84a700d3b31/diff:/var/lib/docker/overlay2/cc32f667ea984df5121fdd3b25b0daf8f4f7fbe7b7fc0ca45319250e5b309ae3/diff",
            "MergedDir": "/var/lib/docker/overlay2/82f38583c1fcb187adbeb2a8502b51a0c8f40e3fafce27219a1e4a798c253f8b/merged",
            "UpperDir": "/var/lib/docker/overlay2/82f38583c1fcb187adbeb2a8502b51a0c8f40e3fafce27219a1e4a798c253f8b/diff",
            "WorkDir": "/var/lib/docker/overlay2/82f38583c1fcb187adbeb2a8502b51a0c8f40e3fafce27219a1e4a798c253f8b/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:45bbe3d22998589317c7f6c4dd591475423bb37ca9b922529c5878653483b18d",
            "sha256:587de81757b4d59dd6a98251ae78b922d95aaeb15d2dfbff6cf0d49d8aa41f5e",
            "sha256:c80ea83cb496d3299c10d0e2adf18a8c44890b0b270ab9d5843bded81edeaba1",
            "sha256:55aec4a2b2a59d15da3a242a12cbbabc6d0b27471bb1f4ae83112d4e7784cd48",
            "sha256:b9dfec2e8cec2ff300bc55666cac2de3d643200b0cd2c33c46e486d45fe68583",
            "sha256:622cd7dc8e134396227bc78ed7048b6ced773f0c472c5d27d848f9abdf16efa8",
            "sha256:839e139bd093146e10e1d5e2744b7242d53d4123abbcb5f8cb45ce94844dd3b5",
            "sha256:87b849717766926b42785e41f21a6837cafc005d9f954c328db0ab65e0924f35",
            "sha256:31a9bd373c8b51de10c80331d6fb2a86e0a92a2d2ea4e6af7ac4547dadffc3ed",
            "sha256:1a4645ad2fd04041da9ea536333aa26db91d52bda9e101a0460b2e99b86ba7c0",
            "sha256:65a8151c0569598f7101428f9c4158740221543e8514d8f73793c7a922d08138",
            "sha256:8b354d72b55743a23d85e163f320d17132fe63eb8412634dec69cb4fe541ebbe",
            "sha256:8203c61b5d7e6bfd41f0f2da02f42412ec4ff589dccd6566f7aadc2a9edb703b",
            "sha256:608b3c1258366dbccabcc1f90f0de498fffc6a69aa3731f8a1697990fb2bdf31",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:71d153ebbaaf63371a34cebfc44a4122a571c637be69e3784ce935ef019e49c7",
            "sha256:03035a10a3681345d6ffa1ca89f8f38936f3e065f2adb65d384aa90f2640cba5"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-01-11T00:08:05.934630574+08:00"
    }
}

更多版本

docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.71GB2024-07-18 11:25
1163

docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime

linux/amd64 docker.io6.48GB2024-07-26 13:31
845

docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel

linux/amd64 docker.io17.08GB2024-08-06 11:11
650

docker.io/pytorch/pytorch:2.4.1-cuda12.4-cudnn9-runtime

linux/amd64 docker.io5.99GB2024-09-21 01:42
722

docker.io/pytorch/pytorch:2.2.1-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.60GB2024-09-25 04:29
278

docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-runtime

linux/amd64 docker.io6.36GB2024-09-28 00:59
313

docker.io/pytorch/pytorch:2.1.0-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.39GB2024-10-02 00:43
246

docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel

linux/amd64 docker.io13.63GB2024-10-23 00:32
182

docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel

linux/amd64 docker.io13.17GB2024-11-01 00:22
301

docker.io/pytorch/pytorch:2.5.1-cuda12.4-cudnn9-devel

linux/amd64 docker.io13.31GB2024-11-06 01:09
159

docker.io/pytorch/pytorch:2.5.1-cuda12.4-cudnn9-runtime

linux/amd64 docker.io6.14GB2024-11-06 01:24
204

docker.io/pytorch/pytorch:2.5.0-cuda12.4-cudnn9-runtime

linux/amd64 docker.io6.13GB2024-11-06 01:38
102

docker.io/pytorch/pytorch:2.5.0-cuda12.4-cudnn9-devel

linux/amd64 docker.io13.30GB2024-11-06 01:51
98

docker.io/pytorch/pytorch:2.5.1-cuda12.1-cudnn9-runtime

linux/amd64 docker.io5.90GB2024-11-07 00:14
154

docker.io/pytorch/pytorch:2.3.1-cuda11.8-cudnn8-runtime

linux/amd64 docker.io8.17GB2024-11-08 00:19
86

docker.io/pytorch/pytorch:2.3.1-cuda12.1-cudnn8-devel

linux/amd64 docker.io17.08GB2024-11-08 00:39
86

docker.io/pytorch/pytorch:1.13.1-cuda11.6-cudnn8-devel

linux/amd64 docker.io17.52GB2024-11-08 01:12
121

docker.io/pytorch/pytorch:2.1.2-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.33GB2024-12-10 00:33
70

docker.io/pytorch/pytorch:2.2.0-cuda12.1-cudnn8-devel

linux/amd64 docker.io16.99GB2024-12-15 00:21
59

docker.io/pytorch/pytorch:2.1.2-cuda12.1-cudnn8-devel

linux/amd64 docker.io16.58GB2024-12-20 00:05
48

docker.io/pytorch/pytorch:2.1.2-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.22GB2025-01-10 00:32
22

docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel

linux/amd64 docker.io13.10GB2025-01-11 00:22
25