docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel linux/amd64

docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel - 国内下载镜像源 浏览次数:310 安全受验证的发布者-Pytorch

PyTorch是一个深度学习框架,旨在简化机器学习算法的实现和部署。该镜像提供了一个基于Python 3.x的环境,可以用于快速启动和测试PyTorch项目。

源镜像 docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel
镜像ID sha256:42a0e9b621e250719cb14f3d28fd423d795f2d85edaee81b582640ae44e93a09
镜像TAG 2.0.1-cuda11.7-cudnn8-devel
大小 13.17GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /workspace
OS/平台 linux/amd64
浏览量 310 次
贡献者 em*****q@163.com
镜像创建 2023-05-12T23:31:56.906104448Z
同步时间 2024-11-01 00:22
更新时间 2025-01-16 23:30
环境变量
PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=11.7 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511 NV_CUDA_CUDART_VERSION=11.7.60-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-7 CUDA_VERSION=11.7.0 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=11.7.0-1 NV_NVTX_VERSION=11.7.50-1 NV_LIBNPP_VERSION=11.7.3.21-1 NV_LIBNPP_PACKAGE=libnpp-11-7=11.7.3.21-1 NV_LIBCUSPARSE_VERSION=11.7.3.50-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-7 NV_LIBCUBLAS_VERSION=11.10.1.25-1 NV_LIBCUBLAS_PACKAGE=libcublas-11-7=11.10.1.25-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.13.4-1 NCCL_VERSION=2.13.4-1 NV_LIBNCCL_PACKAGE=libnccl2=2.13.4-1+cuda11.7 NVIDIA_PRODUCT_NAME=CUDA NVIDIA_CUDA_END_OF_LIFE=1 NV_CUDA_CUDART_DEV_VERSION=11.7.60-1 NV_NVML_DEV_VERSION=11.7.50-1 NV_LIBCUSPARSE_DEV_VERSION=11.7.3.50-1 NV_LIBNPP_DEV_VERSION=11.7.3.21-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-7=11.7.3.21-1 NV_LIBCUBLAS_DEV_VERSION=11.10.1.25-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-7 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-7=11.10.1.25-1 NV_NVPROF_VERSION=11.7.50-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-7=11.7.50-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.13.4-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.13.4-1+cuda11.7 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.5.0.96 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.5.0.96-1+cuda11.7 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.5.0.96-1+cuda11.7 PYTORCH_VERSION=2.0.1
镜像标签
8.5.0.96: com.nvidia.cudnn.version nvidia_driver: com.nvidia.volumes.needed NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer
镜像安全扫描 查看Trivy扫描报告

系统OS: ubuntu 20.04 扫描引擎: Trivy 扫描时间: 2024-11-01 14:40

低危漏洞:234 中危漏洞:1989 高危漏洞:79 严重漏洞:0

Docker拉取命令 无权限下载?点我修复

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel  docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel  docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel

Shell快速替换命令

sed -i 's#pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel  docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel  docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel'

镜像构建历史


# 2023-05-13 07:31:56  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2023-05-13 07:31:56  0.00B 设置环境变量 PYTORCH_VERSION
ENV PYTORCH_VERSION=2.0.1
                        
# 2023-05-13 07:31:56  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-05-13 07:31:56  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-05-13 07:31:56  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-05-13 07:31:56  0.00B 设置环境变量 PATH
ENV PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-05-13 07:31:56  0.00B 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.0.1 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=11.7.0 /bin/sh -c if test -n "${TRITON_VERSION}" -a "${TARGETPLATFORM}" != "linux/arm64"; then         DEBIAN_FRONTEND=noninteractive apt install -y --no-install-recommends gcc;         rm -rf /var/lib/apt/lists/*;     fi # buildkit
                        
# 2023-05-13 07:31:56  6.38GB 复制新文件或目录到容器中
COPY /opt/conda /opt/conda # buildkit
                        
# 2023-05-13 07:25:22  3.25MB 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.0.1 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=11.7.0 /bin/sh -c apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends         ca-certificates         libjpeg-dev         libpng-dev         && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-05-13 07:25:22  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver
                        
# 2023-05-13 07:25:22  0.00B 定义构建参数
ARG CUDA_VERSION
                        
# 2023-05-13 07:25:22  0.00B 定义构建参数
ARG TARGETPLATFORM
                        
# 2023-05-13 07:25:22  0.00B 定义构建参数
ARG TRITON_VERSION
                        
# 2023-05-13 07:25:22  0.00B 定义构建参数
ARG PYTORCH_VERSION
                        
# 2022-12-17 09:09:24  1.94GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-12-17 09:09:24  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.5.0.96
                        
# 2022-12-17 09:09:24  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-12-17 09:09:24  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-12-17 09:09:24  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.5.0.96-1+cuda11.7
                        
# 2022-12-17 09:09:24  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.5.0.96-1+cuda11.7
                        
# 2022-12-17 09:09:24  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2022-12-17 09:09:24  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.5.0.96
                        
# 2022-12-15 04:13:58  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2022-12-15 04:13:58  374.63KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2022-12-15 04:13:57  2.82GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     libtinfo5 libncursesw5     cuda-cudart-dev-11-7=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-11-7=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-11-7=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-11-7=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-11-7=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-11-7=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-12-15 04:13:57  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-12-15 04:13:57  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.13.4-1+cuda11.7
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.13.4-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.13.4-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-7=11.7.50-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=11.7.50-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-7=11.10.1.25-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-7
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=11.10.1.25-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-7=11.7.3.21-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=11.7.3.21-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=11.7.3.50-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=11.7.50-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=11.7.60-1
                        
# 2022-12-15 04:13:57  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.7.0-1
                        
# 2022-12-15 04:03:03  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2022-12-15 04:03:03  0.00B 设置环境变量 NVIDIA_CUDA_END_OF_LIFE
ENV NVIDIA_CUDA_END_OF_LIFE=1
                        
# 2022-12-15 04:03:03  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2022-12-15 04:03:03  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2022-12-15 04:03:03  3.04KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2022-12-15 04:03:03  258.24KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2022-12-15 04:03:02  1.82GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-11-7=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-11-7=${NV_NVTX_VERSION}     libcusparse-11-7=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-12-15 04:03:02  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-12-15 04:03:02  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.13.4-1+cuda11.7
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.13.4-1
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.13.4-1
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-11-7=11.10.1.25-1
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=11.10.1.25-1
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-7
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=11.7.3.50-1
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-11-7=11.7.3.21-1
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=11.7.3.21-1
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=11.7.50-1
                        
# 2022-12-15 04:03:02  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.7.0-1
                        
# 2022-12-15 03:58:37  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2022-12-15 03:58:37  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2022-12-15 03:58:37  16.05KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2022-12-15 03:58:37  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2022-12-15 03:58:37  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2022-12-15 03:58:37  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2022-12-15 03:58:37  119.68MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-11-7=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-12-15 03:58:22  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=11.7.0
                        
# 2022-12-15 03:58:22  18.28MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH}/3bf863cc.pub | apt-key add - &&     echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/${NVARCH} /" > /etc/apt/sources.list.d/cuda.list &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2022-12-15 03:58:22  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2022-12-15 03:58:22  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2022-12-15 03:58:22  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-7
                        
# 2022-12-15 03:58:22  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=11.7.60-1
                        
# 2022-12-15 03:58:22  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=11.7 brand=tesla,driver>=450,driver<451 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=510,driver<511 brand=unknown,driver>=510,driver<511 brand=nvidia,driver>=510,driver<511 brand=nvidiartx,driver>=510,driver<511 brand=quadro,driver>=510,driver<511 brand=quadrortx,driver>=510,driver<511 brand=titan,driver>=510,driver<511 brand=titanrtx,driver>=510,driver<511 brand=geforce,driver>=510,driver<511 brand=geforcertx,driver>=510,driver<511
                        
# 2022-12-15 03:58:22  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2022-12-09 09:20:21  0.00B 
/bin/sh -c #(nop)  CMD ["bash"]
                        
# 2022-12-09 09:20:21  72.79MB 
/bin/sh -c #(nop) ADD file:9d282119af0c42bc823c95b4192a3350cf2cad670622017356dd2e637762e425 in / 
                        
                    

镜像信息

{
    "Id": "sha256:42a0e9b621e250719cb14f3d28fd423d795f2d85edaee81b582640ae44e93a09",
    "RepoTags": [
        "pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel"
    ],
    "RepoDigests": [
        "pytorch/pytorch@sha256:4f66166dd757752a6a6a9284686b4078e92337cd9d12d2e14d2d46274dfa9048",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch@sha256:4f66166dd757752a6a6a9284686b4078e92337cd9d12d2e14d2d46274dfa9048"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2023-05-12T23:31:56.906104448Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=11.7 brand=tesla,driver\u003e=450,driver\u003c451 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=510,driver\u003c511 brand=unknown,driver\u003e=510,driver\u003c511 brand=nvidia,driver\u003e=510,driver\u003c511 brand=nvidiartx,driver\u003e=510,driver\u003c511 brand=quadro,driver\u003e=510,driver\u003c511 brand=quadrortx,driver\u003e=510,driver\u003c511 brand=titan,driver\u003e=510,driver\u003c511 brand=titanrtx,driver\u003e=510,driver\u003c511 brand=geforce,driver\u003e=510,driver\u003c511 brand=geforcertx,driver\u003e=510,driver\u003c511",
            "NV_CUDA_CUDART_VERSION=11.7.60-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-7",
            "CUDA_VERSION=11.7.0",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=11.7.0-1",
            "NV_NVTX_VERSION=11.7.50-1",
            "NV_LIBNPP_VERSION=11.7.3.21-1",
            "NV_LIBNPP_PACKAGE=libnpp-11-7=11.7.3.21-1",
            "NV_LIBCUSPARSE_VERSION=11.7.3.50-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-7",
            "NV_LIBCUBLAS_VERSION=11.10.1.25-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-11-7=11.10.1.25-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.13.4-1",
            "NCCL_VERSION=2.13.4-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.13.4-1+cuda11.7",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NVIDIA_CUDA_END_OF_LIFE=1",
            "NV_CUDA_CUDART_DEV_VERSION=11.7.60-1",
            "NV_NVML_DEV_VERSION=11.7.50-1",
            "NV_LIBCUSPARSE_DEV_VERSION=11.7.3.50-1",
            "NV_LIBNPP_DEV_VERSION=11.7.3.21-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-7=11.7.3.21-1",
            "NV_LIBCUBLAS_DEV_VERSION=11.10.1.25-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-7",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-7=11.10.1.25-1",
            "NV_NVPROF_VERSION=11.7.50-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-7=11.7.50-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.13.4-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.13.4-1+cuda11.7",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.5.0.96",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.5.0.96-1+cuda11.7",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.5.0.96-1+cuda11.7",
            "PYTORCH_VERSION=2.0.1"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.5.0.96",
            "com.nvidia.volumes.needed": "nvidia_driver",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 13173759479,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/e7761aec377558701c23d9848b4117cd6acba25dc9d67ca448ccd344fc7283ff/diff:/var/lib/docker/overlay2/30e9d46d2684e23346b5315e40c403f271839a86e5e79f334af43eb2ab3b95c8/diff:/var/lib/docker/overlay2/21e435557105d60dd72b961910834f22430f40ef490627b9df21989a96ce58f0/diff:/var/lib/docker/overlay2/9bd7a2b36f3efbe93f88b6f36c27527b79f1577f82d406dbe46015aa12b5a14e/diff:/var/lib/docker/overlay2/e06349d8213cef85fac8bf2a6db0f2d5f376952b1854325a8de5bbf6c327edc9/diff:/var/lib/docker/overlay2/64e8f383c96bdf8d81a7760fc4210709bcd34e403beeeac36d135b6966a9f218/diff:/var/lib/docker/overlay2/964ebb0d939466a8ef588ecada2c473768656bbcac31f2bd54e6fa38dc8241e4/diff:/var/lib/docker/overlay2/c1e9ab7a62e7ae69acfbebbbfaac5e05fedea47403589c55062c01d8fbfb44a6/diff:/var/lib/docker/overlay2/895acf9a29455211b3d05e542292d65971372e50cf41ded4c361ea579fda0c8d/diff:/var/lib/docker/overlay2/2d0bab80f66d89d1f679ff5017abebf00d53228a3e44455de2e7b2261213baa4/diff:/var/lib/docker/overlay2/4a0ffd532fc9cdb2bb98ee6d72823a621acebceafb4269cae368d9648681a472/diff:/var/lib/docker/overlay2/097943daff9da17420e95056115b26a86e4200a1e4e5f3cb609877a58caedd05/diff:/var/lib/docker/overlay2/e24545af4680d903b1cea40e476df5b9cb3740792d78137b1ca50cef967ceb44/diff:/var/lib/docker/overlay2/bd05410eb55b077376cda35e16032e77d77ddb654a0052d180362b7c16be9773/diff:/var/lib/docker/overlay2/9b22e2038754212794012d590e69fe85e54ef6d2e2ca656cee55734cb442808a/diff",
            "MergedDir": "/var/lib/docker/overlay2/641401bca3b271c3fa226ba4a257084fb9559b62396e12d7c60b5cdab6264782/merged",
            "UpperDir": "/var/lib/docker/overlay2/641401bca3b271c3fa226ba4a257084fb9559b62396e12d7c60b5cdab6264782/diff",
            "WorkDir": "/var/lib/docker/overlay2/641401bca3b271c3fa226ba4a257084fb9559b62396e12d7c60b5cdab6264782/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:0002c93bdb3704dd9e36ce5153ef637f84de253015f3ee330468dccdeacad60b",
            "sha256:b1a30caae1b901e4f37d1246569629689cc5d611ed45e7fa48411d71ccbf7f2e",
            "sha256:c638c9ad4d00af1f7f91cc3bd0b058e43718f3a276f4c0c83c32c86287d11e02",
            "sha256:29d81efb70cded94cad18a73eb9c0b8daf74b51599164f80a29c11740a8a58da",
            "sha256:02b35daccca6836ed83b176eea233faec76f4763ce30f51bf41c5377554aa8dc",
            "sha256:ff2d63ace99b381d7c25560ff58b478052dd24fdef514e58ab151daa87be4b3e",
            "sha256:a135fd5c90399fcb72fd1b5d01fe79e880d427b62cda9cfbecfcaea92c58c380",
            "sha256:9586853ba917934ed7eb1c6934fc20e43d54d49f496591e1c5a1f444442f72af",
            "sha256:3657184a5238a93028b5d8a496a028ea19f1cc99d396058f58f8273a7efdba24",
            "sha256:f626e92b1911f3362f9fd3779b4613e9e6606d7537462bb225949e8fd8735d0e",
            "sha256:f2e94848333a5f4e41be37b8edcd9dcdd2ed246376e24967ab8f42b5d339ff5f",
            "sha256:0d262b16f3104d2efa81699ac5779fb2932935ecea2223de991f4e383987d626",
            "sha256:4197bec0af74cb69e8c5b789d2f822bf8d2dc346ee6edb23e6c9685182a06dcc",
            "sha256:78af4ff9cb2f4d775c0feffd705217fcb8859c5940cc31dac286c69cd6801e8d",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:cc25370f74406e80fa3b80a8cae72620d5761577a66ebde391fa25ffa37d3c2d"
        ]
    },
    "Metadata": {
        "LastTagTime": "2024-11-01T00:14:15.151069981+08:00"
    }
}

更多版本

docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.71GB2024-07-18 11:25
1184

docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime

linux/amd64 docker.io6.48GB2024-07-26 13:31
854

docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel

linux/amd64 docker.io17.08GB2024-08-06 11:11
655

docker.io/pytorch/pytorch:2.4.1-cuda12.4-cudnn9-runtime

linux/amd64 docker.io5.99GB2024-09-21 01:42
726

docker.io/pytorch/pytorch:2.2.1-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.60GB2024-09-25 04:29
283

docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-runtime

linux/amd64 docker.io6.36GB2024-09-28 00:59
317

docker.io/pytorch/pytorch:2.1.0-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.39GB2024-10-02 00:43
258

docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel

linux/amd64 docker.io13.63GB2024-10-23 00:32
190

docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel

linux/amd64 docker.io13.17GB2024-11-01 00:22
309

docker.io/pytorch/pytorch:2.5.1-cuda12.4-cudnn9-devel

linux/amd64 docker.io13.31GB2024-11-06 01:09
169

docker.io/pytorch/pytorch:2.5.1-cuda12.4-cudnn9-runtime

linux/amd64 docker.io6.14GB2024-11-06 01:24
215

docker.io/pytorch/pytorch:2.5.0-cuda12.4-cudnn9-runtime

linux/amd64 docker.io6.13GB2024-11-06 01:38
109

docker.io/pytorch/pytorch:2.5.0-cuda12.4-cudnn9-devel

linux/amd64 docker.io13.30GB2024-11-06 01:51
102

docker.io/pytorch/pytorch:2.5.1-cuda12.1-cudnn9-runtime

linux/amd64 docker.io5.90GB2024-11-07 00:14
159

docker.io/pytorch/pytorch:2.3.1-cuda11.8-cudnn8-runtime

linux/amd64 docker.io8.17GB2024-11-08 00:19
92

docker.io/pytorch/pytorch:2.3.1-cuda12.1-cudnn8-devel

linux/amd64 docker.io17.08GB2024-11-08 00:39
90

docker.io/pytorch/pytorch:1.13.1-cuda11.6-cudnn8-devel

linux/amd64 docker.io17.52GB2024-11-08 01:12
129

docker.io/pytorch/pytorch:2.1.2-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.33GB2024-12-10 00:33
72

docker.io/pytorch/pytorch:2.2.0-cuda12.1-cudnn8-devel

linux/amd64 docker.io16.99GB2024-12-15 00:21
63

docker.io/pytorch/pytorch:2.1.2-cuda12.1-cudnn8-devel

linux/amd64 docker.io16.58GB2024-12-20 00:05
50

docker.io/pytorch/pytorch:2.1.2-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.22GB2025-01-10 00:32
25

docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel

linux/amd64 docker.io13.10GB2025-01-11 00:22
30

docker.io/pytorch/pytorch:2.2.2-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.74GB2025-01-18 01:16
11