docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel linux/amd64

docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel - 国内下载镜像源 浏览次数:190 安全受验证的发布者-Pytorch

PyTorch是一个深度学习框架,旨在简化机器学习算法的实现和部署。该镜像提供了一个基于Python 3.x的环境,可以用于快速启动和测试PyTorch项目。

源镜像 docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel
镜像ID sha256:c7cbbe35f744eb877e8f2f7c0dc89f1acc5f4f90e040fa6e204329ae9f871fb3
镜像TAG 2.4.1-cuda11.8-cudnn9-devel
大小 13.63GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /workspace
OS/平台 linux/amd64
浏览量 190 次
贡献者
镜像创建 2024-09-04T19:56:42.029798501Z
同步时间 2024-10-23 00:32
更新时间 2025-01-17 20:38
环境变量
PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 NV_CUDA_CUDART_VERSION=11.8.89-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8 CUDA_VERSION=11.8.0 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=11.8.0-1 NV_NVTX_VERSION=11.8.86-1 NV_LIBNPP_VERSION=11.8.0.86-1 NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1 NV_LIBCUSPARSE_VERSION=11.7.5.86-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8 NV_LIBCUBLAS_VERSION=11.11.3.6-1 NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1 NCCL_VERSION=2.15.5-1 NV_LIBNCCL_PACKAGE=libnccl2=2.15.5-1+cuda11.8 NVIDIA_PRODUCT_NAME=CUDA NV_CUDA_CUDART_DEV_VERSION=11.8.89-1 NV_NVML_DEV_VERSION=11.8.86-1 NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1 NV_LIBNPP_DEV_VERSION=11.8.0.86-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1 NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=11.8.0-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-8=11.8.0-1 NV_NVPROF_VERSION=11.8.87-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.15.5-1+cuda11.8 LIBRARY_PATH=/usr/local/cuda/lib64/stubs PYTORCH_VERSION=2.4.1
镜像标签
nvidia_driver: com.nvidia.volumes.needed NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version
镜像安全扫描 查看Trivy扫描报告

系统OS: ubuntu 22.04 扫描引擎: Trivy 扫描时间: 2024-10-27 02:27

低危漏洞:224 中危漏洞:1694 高危漏洞:37 严重漏洞:0

Docker拉取命令 无权限下载?点我修复

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel  docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel  docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel

Shell快速替换命令

sed -i 's#pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel  docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel  docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel'

镜像构建历史


# 2024-09-05 03:56:42  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2024-09-05 03:56:42  0.00B 设置环境变量 PYTORCH_VERSION
ENV PYTORCH_VERSION=2.4.1
                        
# 2024-09-05 03:56:42  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2024-09-05 03:56:42  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2024-09-05 03:56:42  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2024-09-05 03:56:42  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2024-09-05 03:56:42  0.00B 设置环境变量 PATH
ENV PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2024-09-05 03:56:42  0.00B 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.4.1 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=11.8.0 /bin/sh -c if test -n "${TRITON_VERSION}" -a "${TARGETPLATFORM}" != "linux/arm64"; then         DEBIAN_FRONTEND=noninteractive apt install -y --no-install-recommends gcc;         rm -rf /var/lib/apt/lists/*;     fi # buildkit
                        
# 2024-09-05 03:56:41  6.25GB 复制新文件或目录到容器中
COPY /opt/conda /opt/conda # buildkit
                        
# 2024-09-05 03:52:49  3.31MB 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.4.1 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=11.8.0 /bin/sh -c apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends         ca-certificates         libjpeg-dev         libpng-dev         && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-09-05 03:52:49  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver
                        
# 2024-09-05 03:52:49  0.00B 定义构建参数
ARG CUDA_VERSION=11.8.0
                        
# 2024-09-05 03:52:49  0.00B 定义构建参数
ARG TARGETPLATFORM=linux/amd64
                        
# 2024-09-05 03:52:49  0.00B 定义构建参数
ARG TRITON_VERSION=
                        
# 2024-09-05 03:52:49  0.00B 定义构建参数
ARG PYTORCH_VERSION=2.4.1
                        
# 2023-11-10 14:55:21  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-11-10 14:55:21  383.52KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 14:55:17  4.72GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-dev-11-8=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-11-8=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-11-8=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-11-8=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-11-8=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-11-8=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:55:17  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:55:17  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.15.5-1+cuda11.8
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.15.5-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=11.8.87-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-8=11.8.0-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=11.8.0-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=11.8.0.86-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=11.8.86-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=11.8.89-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.8.0-1
                        
# 2023-11-10 14:42:37  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 14:42:37  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 14:42:37  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 14:42:37  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 14:42:37  260.16KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 14:42:36  2.41GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-11-8=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-11-8=${NV_NVTX_VERSION}     libcusparse-11-8=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:42:36  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:42:36  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.15.5-1+cuda11.8
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.15.5-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=11.11.3.6-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=11.7.5.86-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=11.8.0.86-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=11.8.86-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.8.0-1
                        
# 2023-11-10 14:37:16  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 14:37:16  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 14:37:16  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 14:37:16  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 14:37:16  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 14:37:16  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 14:37:16  150.67MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-11-8=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=11.8.0
                        
# 2023-11-10 14:37:01  10.56MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb &&     dpkg -i cuda-keyring_1.0-1_all.deb &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:37:01  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:37:01  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=11.8.89-1
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-05 15:33:32  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-05 15:33:32  77.82MB 
/bin/sh -c #(nop) ADD file:63d5ab3ef0aab308c0e71cb67292c5467f60deafa9b0418cbb220affcd078444 in / 
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:c7cbbe35f744eb877e8f2f7c0dc89f1acc5f4f90e040fa6e204329ae9f871fb3",
    "RepoTags": [
        "pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel"
    ],
    "RepoDigests": [
        "pytorch/pytorch@sha256:ebefd256e8247f1cea8f8cadd77f1944f6c3e65585c4e39a8d4135d29de4a0cb",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch@sha256:ebefd256e8247f1cea8f8cadd77f1944f6c3e65585c4e39a8d4135d29de4a0cb"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2024-09-04T19:56:42.029798501Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=11.8 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471",
            "NV_CUDA_CUDART_VERSION=11.8.89-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8",
            "CUDA_VERSION=11.8.0",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=11.8.0-1",
            "NV_NVTX_VERSION=11.8.86-1",
            "NV_LIBNPP_VERSION=11.8.0.86-1",
            "NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1",
            "NV_LIBCUSPARSE_VERSION=11.7.5.86-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8",
            "NV_LIBCUBLAS_VERSION=11.11.3.6-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1",
            "NCCL_VERSION=2.15.5-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.15.5-1+cuda11.8",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDA_CUDART_DEV_VERSION=11.8.89-1",
            "NV_NVML_DEV_VERSION=11.8.86-1",
            "NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1",
            "NV_LIBNPP_DEV_VERSION=11.8.0.86-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1",
            "NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=11.8.0-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-8=11.8.0-1",
            "NV_NVPROF_VERSION=11.8.87-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.15.5-1+cuda11.8",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "PYTORCH_VERSION=2.4.1"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.volumes.needed": "nvidia_driver",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 13627351199,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/82ff29acd43dc47e3c6a16b8160e5d89de780de253e3db54efa7ae5138b7cf99/diff:/var/lib/docker/overlay2/019e05f4f348cb1c2511f437a2908187ce59dfa07aa2a4c370ebc069fc614052/diff:/var/lib/docker/overlay2/4edc2fcc50caca2cd03af748bb9e35915cac06560970f794b63ba1e5826088c6/diff:/var/lib/docker/overlay2/7cdb99f5d0381f9c897a61a5b82103fbb61931826efcf426bd7347aa96d5016a/diff:/var/lib/docker/overlay2/cb0e0e4f8e09b57a3a90caea79b5b72e5868e9a90c1e6f83c01bb427be92ecb0/diff:/var/lib/docker/overlay2/9a0e81509aa31dc4ad324c34f6f30d2ac7c2c81b02977c45f49f1054a09829ef/diff:/var/lib/docker/overlay2/80ab3df1b7f057a89b41df3960815c2b805112ec09ac8103dfa3e15083f5bde4/diff:/var/lib/docker/overlay2/9ed14e9fac4b4a423a04e8e8ed5abfc3cb516874f12414e5f9f04d960135b133/diff:/var/lib/docker/overlay2/b7a82ad6c019784d57e389476eb56049090dbc7c1c327eda031e76be7d0eb943/diff:/var/lib/docker/overlay2/44c5231aedde3c33254fb56d25985d3308f7e85ab85a47d8e0502f17da2c4ee2/diff:/var/lib/docker/overlay2/a29b41bfa46876be20110aeb88a28c2b5bf306abae5bfc35fcffc09ef770fdd9/diff:/var/lib/docker/overlay2/90f7152e083e176327ffe123f8dadf73a87302788f3a993bfae0af45ec978d5f/diff:/var/lib/docker/overlay2/50f46180dcca4ca872c5cb2bb72b8ca3f76a3c747e5c53dd5cfe7a784d9321c6/diff:/var/lib/docker/overlay2/f2905627b4505cda033dd62b5a5dc1676edda5a6e1bda7cd6e6e2048fcf5aee0/diff",
            "MergedDir": "/var/lib/docker/overlay2/928895ee3e128adbd039171818c7f8dbfd86c603c3bfefe31ab002ea6abb2fd5/merged",
            "UpperDir": "/var/lib/docker/overlay2/928895ee3e128adbd039171818c7f8dbfd86c603c3bfefe31ab002ea6abb2fd5/diff",
            "WorkDir": "/var/lib/docker/overlay2/928895ee3e128adbd039171818c7f8dbfd86c603c3bfefe31ab002ea6abb2fd5/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:256d88da41857db513b95b50ba9a9b28491b58c954e25477d5dad8abb465430b",
            "sha256:e6c05e83c163d632918d1c4906ee088b1e0d93a5bb3acfc6a268da52e76cc945",
            "sha256:d6b19a46b795f8b562888c6e2826a6b11f744ab98543268b4d45ee1af05ed1cf",
            "sha256:c0e21dcee62311c36e1f025307b3186a4b4a034f0b52011704402b39623b6587",
            "sha256:498bbcc60d01b2080fd6fc35117cb82c80ddd4eb8a654ee330dd91587b7ec90b",
            "sha256:bc352a27a0e47d42df7bc06e702351a4f3102d20016484c9613644dba63239e0",
            "sha256:399d155a03b034314cd9ea52e4e1feca44be4cf92ae172ba9c6ce14f5897f0a2",
            "sha256:dcb0f55f81ad931bb976c65730e4bafe7a03936d1fd1bd0fec6a9bcfde23561d",
            "sha256:345cfa465206a6d1cc0812481df7edbc4553b64a26c63ccda0e5b11b0f2bf81b",
            "sha256:23d753990c8d9e30e33dc706e188972e17fd21ae60b51bbce058d6d74aa08d29",
            "sha256:64758552f6fa927694d06ecab82c2a3d1f55e6bfb09c715b6d37f2963eaaa62c",
            "sha256:c7a7539579efe7ac04d236ae2aa925cbaf078c4e3aeb0da69c6a86e17610e32f",
            "sha256:40f2bc16b600ac285df3a6c397252752f1b27ae29b31a488c7a02b4119f93087",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:88ea7c000dc083182036dec861c8abb25b8f5b4b40d402a31d724f610f5f98da"
        ]
    },
    "Metadata": {
        "LastTagTime": "2024-10-23T00:25:11.51895745+08:00"
    }
}

更多版本

docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.71GB2024-07-18 11:25
1184

docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime

linux/amd64 docker.io6.48GB2024-07-26 13:31
853

docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel

linux/amd64 docker.io17.08GB2024-08-06 11:11
655

docker.io/pytorch/pytorch:2.4.1-cuda12.4-cudnn9-runtime

linux/amd64 docker.io5.99GB2024-09-21 01:42
726

docker.io/pytorch/pytorch:2.2.1-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.60GB2024-09-25 04:29
283

docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-runtime

linux/amd64 docker.io6.36GB2024-09-28 00:59
317

docker.io/pytorch/pytorch:2.1.0-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.39GB2024-10-02 00:43
258

docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel

linux/amd64 docker.io13.63GB2024-10-23 00:32
189

docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel

linux/amd64 docker.io13.17GB2024-11-01 00:22
309

docker.io/pytorch/pytorch:2.5.1-cuda12.4-cudnn9-devel

linux/amd64 docker.io13.31GB2024-11-06 01:09
169

docker.io/pytorch/pytorch:2.5.1-cuda12.4-cudnn9-runtime

linux/amd64 docker.io6.14GB2024-11-06 01:24
215

docker.io/pytorch/pytorch:2.5.0-cuda12.4-cudnn9-runtime

linux/amd64 docker.io6.13GB2024-11-06 01:38
109

docker.io/pytorch/pytorch:2.5.0-cuda12.4-cudnn9-devel

linux/amd64 docker.io13.30GB2024-11-06 01:51
101

docker.io/pytorch/pytorch:2.5.1-cuda12.1-cudnn9-runtime

linux/amd64 docker.io5.90GB2024-11-07 00:14
159

docker.io/pytorch/pytorch:2.3.1-cuda11.8-cudnn8-runtime

linux/amd64 docker.io8.17GB2024-11-08 00:19
92

docker.io/pytorch/pytorch:2.3.1-cuda12.1-cudnn8-devel

linux/amd64 docker.io17.08GB2024-11-08 00:39
90

docker.io/pytorch/pytorch:1.13.1-cuda11.6-cudnn8-devel

linux/amd64 docker.io17.52GB2024-11-08 01:12
129

docker.io/pytorch/pytorch:2.1.2-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.33GB2024-12-10 00:33
72

docker.io/pytorch/pytorch:2.2.0-cuda12.1-cudnn8-devel

linux/amd64 docker.io16.99GB2024-12-15 00:21
63

docker.io/pytorch/pytorch:2.1.2-cuda12.1-cudnn8-devel

linux/amd64 docker.io16.58GB2024-12-20 00:05
50

docker.io/pytorch/pytorch:2.1.2-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.22GB2025-01-10 00:32
25

docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel

linux/amd64 docker.io13.10GB2025-01-11 00:22
30

docker.io/pytorch/pytorch:2.2.2-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.74GB2025-01-18 01:16
10