docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel linux/amd64

docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel - 国内下载镜像源 浏览次数:655 安全受验证的发布者-Pytorch

PyTorch是一个深度学习框架,旨在简化机器学习算法的实现和部署。该镜像提供了一个基于Python 3.x的环境,可以用于快速启动和测试PyTorch项目。

源镜像 docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel
镜像ID sha256:3584aac49cb23ce55c64d9bb96096b22f8b9c94ae5f22de02d7d8581def3ead7
镜像TAG 2.3.0-cuda12.1-cudnn8-devel
大小 17.08GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /workspace
OS/平台 linux/amd64
浏览量 655 次
贡献者
镜像创建 2024-04-24T16:26:16.615852589Z
同步时间 2024-08-06 11:11
更新时间 2025-01-16 14:31
环境变量
PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 NV_CUDA_CUDART_VERSION=12.1.105-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1 CUDA_VERSION=12.1.1 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=12.1.1-1 NV_NVTX_VERSION=12.1.105-1 NV_LIBNPP_VERSION=12.1.0.40-1 NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1 NV_LIBCUSPARSE_VERSION=12.1.0.106-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1 NV_LIBCUBLAS_VERSION=12.1.3.1-1 NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1 NCCL_VERSION=2.17.1-1 NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1 NVIDIA_PRODUCT_NAME=CUDA NV_CUDA_CUDART_DEV_VERSION=12.1.105-1 NV_NVML_DEV_VERSION=12.1.105-1 NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1 NV_LIBNPP_DEV_VERSION=12.1.0.40-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1 NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1 NV_NVPROF_VERSION=12.1.105-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.9.0.131 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1 PYTORCH_VERSION=2.3.0
镜像标签
8.9.0.131: com.nvidia.cudnn.version nvidia_driver: com.nvidia.volumes.needed NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令 无权限下载?点我修复

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel  docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel  docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel

Shell快速替换命令

sed -i 's#pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel  docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel  docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel'

镜像构建历史


# 2024-04-25 00:26:16  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2024-04-25 00:26:16  0.00B 设置环境变量 PYTORCH_VERSION
ENV PYTORCH_VERSION=2.3.0
                        
# 2024-04-25 00:26:16  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2024-04-25 00:26:16  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2024-04-25 00:26:16  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2024-04-25 00:26:16  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2024-04-25 00:26:16  0.00B 设置环境变量 PATH
ENV PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2024-04-25 00:26:16  0.00B 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.3.0 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=12.1.1 /bin/sh -c if test -n "${TRITON_VERSION}" -a "${TARGETPLATFORM}" != "linux/arm64"; then         DEBIAN_FRONTEND=noninteractive apt install -y --no-install-recommends gcc;         rm -rf /var/lib/apt/lists/*;     fi # buildkit
                        
# 2024-04-25 00:26:15  7.59GB 复制新文件或目录到容器中
COPY /opt/conda /opt/conda # buildkit
                        
# 2024-04-25 00:18:37  3.32MB 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.3.0 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=12.1.1 /bin/sh -c apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends         ca-certificates         libjpeg-dev         libpng-dev         && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2024-04-25 00:18:37  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver
                        
# 2024-04-25 00:18:37  0.00B 定义构建参数
ARG CUDA_VERSION
                        
# 2024-04-25 00:18:37  0.00B 定义构建参数
ARG TARGETPLATFORM
                        
# 2024-04-25 00:18:37  0.00B 定义构建参数
ARG TRITON_VERSION
                        
# 2024-04-25 00:18:37  0.00B 定义构建参数
ARG PYTORCH_VERSION
                        
# 2023-11-10 13:52:16  2.45GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:52:16  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.9.0.131
                        
# 2023-11-10 13:52:16  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:52:16  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:52:16  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1
                        
# 2023-11-10 13:52:16  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1
                        
# 2023-11-10 13:52:16  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2023-11-10 13:52:16  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.9.0.131
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-11-10 13:25:51  385.69KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 13:25:51  4.79GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-dev-12-1=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-12-1=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-12-1=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-12-1=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-12-1=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-12-1=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:25:51  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:25:51  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=12.1.0.40-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
                        
# 2023-11-10 13:13:35  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 13:13:35  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 13:13:35  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 13:13:35  261.40KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 13:13:35  2.01GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-12-1=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-12-1=${NV_NVTX_VERSION}     libcusparse-12-1=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:13:35  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:13:35  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=12.1.3.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=12.1.0.106-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=12.1.0.40-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=12.1.105-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 13:08:12  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 13:08:12  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 13:08:11  149.59MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-12-1=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=12.1.1
                        
# 2023-11-10 13:07:58  10.56MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb &&     dpkg -i cuda-keyring_1.0-1_all.deb &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:07:58  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:07:58  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=12.1.105-1
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-05 15:33:32  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-05 15:33:32  77.82MB 
/bin/sh -c #(nop) ADD file:63d5ab3ef0aab308c0e71cb67292c5467f60deafa9b0418cbb220affcd078444 in / 
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:3584aac49cb23ce55c64d9bb96096b22f8b9c94ae5f22de02d7d8581def3ead7",
    "RepoTags": [
        "pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel"
    ],
    "RepoDigests": [
        "pytorch/pytorch@sha256:1bb28822b361bdb2d8cde5a58f08337490bf6e73fc96b0aa1035268c295f3d00",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch@sha256:1bb28822b361bdb2d8cde5a58f08337490bf6e73fc96b0aa1035268c295f3d00"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2024-04-24T16:26:16.615852589Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=12.1 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=525,driver\u003c526 brand=unknown,driver\u003e=525,driver\u003c526 brand=nvidia,driver\u003e=525,driver\u003c526 brand=nvidiartx,driver\u003e=525,driver\u003c526 brand=geforce,driver\u003e=525,driver\u003c526 brand=geforcertx,driver\u003e=525,driver\u003c526 brand=quadro,driver\u003e=525,driver\u003c526 brand=quadrortx,driver\u003e=525,driver\u003c526 brand=titan,driver\u003e=525,driver\u003c526 brand=titanrtx,driver\u003e=525,driver\u003c526",
            "NV_CUDA_CUDART_VERSION=12.1.105-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1",
            "CUDA_VERSION=12.1.1",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=12.1.1-1",
            "NV_NVTX_VERSION=12.1.105-1",
            "NV_LIBNPP_VERSION=12.1.0.40-1",
            "NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1",
            "NV_LIBCUSPARSE_VERSION=12.1.0.106-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1",
            "NV_LIBCUBLAS_VERSION=12.1.3.1-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1",
            "NCCL_VERSION=2.17.1-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDA_CUDART_DEV_VERSION=12.1.105-1",
            "NV_NVML_DEV_VERSION=12.1.105-1",
            "NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1",
            "NV_LIBNPP_DEV_VERSION=12.1.0.40-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1",
            "NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1",
            "NV_NVPROF_VERSION=12.1.105-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.9.0.131",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1",
            "PYTORCH_VERSION=2.3.0"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.9.0.131",
            "com.nvidia.volumes.needed": "nvidia_driver",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 17083811671,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/15a48be752fcbe20d98d094ba354d4f2008339197f95e886de291bb03ca9d4a9/diff:/var/lib/docker/overlay2/df2e36bde927fc1a894f94d9628356f6e6cd00a1979a140e108db730aabfac80/diff:/var/lib/docker/overlay2/bafa261a86d1e689c98060d92943d7315b27f0ae286a8857735b90bb28dbcfc1/diff:/var/lib/docker/overlay2/92e26df346afb2a56a1d15203f1e620102bd4dd693f6ca263c7ffa91a2fa7773/diff:/var/lib/docker/overlay2/489f2d0edb835a082e9405ac78696178d46c8468bb7158516f5fe2a09f7eed2a/diff:/var/lib/docker/overlay2/57a052f93f393a9f3b2f2630c86339a81bfa6cbd671d4b3ede177ee8b23b8489/diff:/var/lib/docker/overlay2/dc176d4a18f57880d351829be000f67d2994e972518d1279fe8592370450a4b3/diff:/var/lib/docker/overlay2/dce6bf8415f769649298ac404fe3fad7799e6a493587790c8589f27d71390b5b/diff:/var/lib/docker/overlay2/dfd19a01747acf5ed181de5d9c3c3d3c5fa7ca7641a6c63c0d24602acf4484ea/diff:/var/lib/docker/overlay2/5d8ec85cb94fd3eb9899dbfac629c2fe8e4a31b700e126133ecbe7bfd1e59f7d/diff:/var/lib/docker/overlay2/a2f7696f9b51554a643ffd48e8668a7cde98aa4ed335357fefbee1b22a29d3e9/diff:/var/lib/docker/overlay2/df1490af8342a06a91d53da8c73e7b7013d0a071c2744a44cba42a4d91aa741b/diff:/var/lib/docker/overlay2/b2bde950298c4f50e8afdec1a718fc653d8b583d5896c25d019427f206de9567/diff:/var/lib/docker/overlay2/8249344a60d0ecfae1369cb33a951fe9c0cc0f34c6ec47c1846cacdeb909946f/diff:/var/lib/docker/overlay2/6e6bdb412ab7b9f101d2e03169e5aefc3a5f604c803508fdbff6c73d547caf26/diff",
            "MergedDir": "/var/lib/docker/overlay2/b2d26a9b0c1f60be976713de8cfee48e1e549c7628edae3932ac3bc771359b5b/merged",
            "UpperDir": "/var/lib/docker/overlay2/b2d26a9b0c1f60be976713de8cfee48e1e549c7628edae3932ac3bc771359b5b/diff",
            "WorkDir": "/var/lib/docker/overlay2/b2d26a9b0c1f60be976713de8cfee48e1e549c7628edae3932ac3bc771359b5b/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:256d88da41857db513b95b50ba9a9b28491b58c954e25477d5dad8abb465430b",
            "sha256:566cd9dd29d693cf0360da8a73391b843bb6ac8f11b4148acf69c4dc79fa87c5",
            "sha256:6ec2b659c9ab00e2b0fc0acd056577e609cc28649650ec7068b81686f6d1a996",
            "sha256:8afeff4e91d72f3de9232ffc0803f70236e316c27b23ee003e6d47fbfcb6e1c4",
            "sha256:bea30ebbe84377ed36503599c2087cd6bda6f4c96cb59525d238d4a00cf902d3",
            "sha256:b15b1df4adac82b2b46124c743a32d5e982cb6b5ee8a3c04949f809abf8962c9",
            "sha256:83ecbf43a888c43f43b0cd9ec7cf551770790c7aeab17f9536b8820db2c5d45d",
            "sha256:83687aeafbbf74a164a51590ffa36c46e9c41ce4ba3eae9daba1d381c64e5f4b",
            "sha256:3416903c2cc4c9f83472b397741f30365f53543862b03ff5727b42b1a2f938cb",
            "sha256:24e1e08aaa60ea10f478c1b68d9444b8ea74bff76e2547712984b5136e79018e",
            "sha256:7aee75a70a2ff35d4990fab501a025afa498f416cb726ace747ccd7fad6500d4",
            "sha256:0f7c883f1a4f4710753cfa1185d8e60584e41f04fe1693bd8c3ee6700b29c7f3",
            "sha256:4d85cce124e9365f437420b706b195db3a6e44b1410f25b7774d98426afcef57",
            "sha256:79e9266fda4d153b5991329b6bd8150c2261a832f3f6d0a116a8800c2804e0ce",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:ee493f07c2ee32fb92a5adaa65f264353b4c14288ca39f849d97706c3697e93a"
        ]
    },
    "Metadata": {
        "LastTagTime": "2024-08-06T11:11:08.28352649+08:00"
    }
}

更多版本

docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.71GB2024-07-18 11:25
1184

docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime

linux/amd64 docker.io6.48GB2024-07-26 13:31
853

docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel

linux/amd64 docker.io17.08GB2024-08-06 11:11
654

docker.io/pytorch/pytorch:2.4.1-cuda12.4-cudnn9-runtime

linux/amd64 docker.io5.99GB2024-09-21 01:42
726

docker.io/pytorch/pytorch:2.2.1-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.60GB2024-09-25 04:29
282

docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-runtime

linux/amd64 docker.io6.36GB2024-09-28 00:59
317

docker.io/pytorch/pytorch:2.1.0-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.39GB2024-10-02 00:43
258

docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel

linux/amd64 docker.io13.63GB2024-10-23 00:32
189

docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel

linux/amd64 docker.io13.17GB2024-11-01 00:22
309

docker.io/pytorch/pytorch:2.5.1-cuda12.4-cudnn9-devel

linux/amd64 docker.io13.31GB2024-11-06 01:09
169

docker.io/pytorch/pytorch:2.5.1-cuda12.4-cudnn9-runtime

linux/amd64 docker.io6.14GB2024-11-06 01:24
215

docker.io/pytorch/pytorch:2.5.0-cuda12.4-cudnn9-runtime

linux/amd64 docker.io6.13GB2024-11-06 01:38
109

docker.io/pytorch/pytorch:2.5.0-cuda12.4-cudnn9-devel

linux/amd64 docker.io13.30GB2024-11-06 01:51
101

docker.io/pytorch/pytorch:2.5.1-cuda12.1-cudnn9-runtime

linux/amd64 docker.io5.90GB2024-11-07 00:14
159

docker.io/pytorch/pytorch:2.3.1-cuda11.8-cudnn8-runtime

linux/amd64 docker.io8.17GB2024-11-08 00:19
92

docker.io/pytorch/pytorch:2.3.1-cuda12.1-cudnn8-devel

linux/amd64 docker.io17.08GB2024-11-08 00:39
90

docker.io/pytorch/pytorch:1.13.1-cuda11.6-cudnn8-devel

linux/amd64 docker.io17.52GB2024-11-08 01:12
129

docker.io/pytorch/pytorch:2.1.2-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.33GB2024-12-10 00:33
72

docker.io/pytorch/pytorch:2.2.0-cuda12.1-cudnn8-devel

linux/amd64 docker.io16.99GB2024-12-15 00:21
63

docker.io/pytorch/pytorch:2.1.2-cuda12.1-cudnn8-devel

linux/amd64 docker.io16.58GB2024-12-20 00:05
50

docker.io/pytorch/pytorch:2.1.2-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.22GB2025-01-10 00:32
25

docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel

linux/amd64 docker.io13.10GB2025-01-11 00:22
30

docker.io/pytorch/pytorch:2.2.2-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.74GB2025-01-18 01:16
10