docker.io/rayproject/ray:2.41.0-py39-gpu linux/amd64

docker.io/rayproject/ray:2.41.0-py39-gpu - 国内下载镜像源 浏览次数:7
_rayproject/ray_ RAY 是一个基于 Python 的高性能计算框架,可以在多种环境中运行,包括本地、云和集群。Ray 提供了高效的并行计算能力,并且可以与其他库和框架集成。 -Ray 的主要特点有: * 高性能:Ray 使用了高性能的编译器和执行引擎,可以在多种环境中运行。 * 可扩展性:Ray 可以轻松地 scales to thousands of machines and can handle large-scale computations. * 可组合性:Ray 可以与其他库和框架集成,例如 TensorFlow、PyTorch 和 scikit-learn。 总的来说,《RAY》是一个功能强大且灵活的计算框架,可以满足各种计算需求。
源镜像 docker.io/rayproject/ray:2.41.0-py39-gpu
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.41.0-py39-gpu
镜像ID sha256:643e513ff6f493b8a7901f07490b8bdda2b7bf937062e849b62c6f723a59ef20
镜像TAG 2.41.0-py39-gpu
大小 11.50GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /home/ray
OS/平台 linux/amd64
浏览量 7 次
贡献者 20*******4@stu.ppsuc.edu.cn
镜像创建 2025-01-15T20:17:49.13233451Z
同步时间 2025-09-24 03:09
更新时间 2025-09-24 05:16
环境变量
PATH=/home/ray/anaconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 NV_CUDA_CUDART_VERSION=12.1.105-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1 CUDA_VERSION=12.1.1 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=12.1.1-1 NV_NVTX_VERSION=12.1.105-1 NV_LIBNPP_VERSION=12.1.0.40-1 NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1 NV_LIBCUSPARSE_VERSION=12.1.0.106-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1 NV_LIBCUBLAS_VERSION=12.1.3.1-1 NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1 NCCL_VERSION=2.17.1-1 NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1 NVIDIA_PRODUCT_NAME=CUDA NV_CUDA_CUDART_DEV_VERSION=12.1.105-1 NV_NVML_DEV_VERSION=12.1.105-1 NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1 NV_LIBNPP_DEV_VERSION=12.1.0.40-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1 NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1 NV_NVPROF_VERSION=12.1.105-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1 LIBRARY_PATH=/usr/local/cuda/lib64/stubs NV_CUDNN_VERSION=8.9.0.131 NV_CUDNN_PACKAGE_NAME=libcudnn8 NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1 NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1 TZ=America/Los_Angeles LC_ALL=C.UTF-8 LANG=C.UTF-8 HOME=/home/ray
镜像标签
8.9.0.131: com.nvidia.cudnn.version NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.41.0-py39-gpu
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.41.0-py39-gpu  docker.io/rayproject/ray:2.41.0-py39-gpu

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.41.0-py39-gpu
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.41.0-py39-gpu  docker.io/rayproject/ray:2.41.0-py39-gpu

Shell快速替换命令

sed -i 's#rayproject/ray:2.41.0-py39-gpu#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.41.0-py39-gpu#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.41.0-py39-gpu && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.41.0-py39-gpu  docker.io/rayproject/ray:2.41.0-py39-gpu'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.41.0-py39-gpu && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.41.0-py39-gpu  docker.io/rayproject/ray:2.41.0-py39-gpu'

镜像构建历史


# 2025-01-16 04:17:49  3.53KB 执行命令并创建新的镜像层
RUN |3 WHEEL_PATH=.whl/ray-2.41.0-cp39-cp39-manylinux2014_x86_64.whl FIND_LINKS_PATH=.whl CONSTRAINTS_FILE=requirements_compiled.txt /bin/bash -c $HOME/anaconda3/bin/pip freeze > /home/ray/pip-freeze.txt # buildkit
                        
# 2025-01-16 04:17:48  796.17MB 执行命令并创建新的镜像层
RUN |3 WHEEL_PATH=.whl/ray-2.41.0-cp39-cp39-manylinux2014_x86_64.whl FIND_LINKS_PATH=.whl CONSTRAINTS_FILE=requirements_compiled.txt /bin/bash -c $HOME/anaconda3/bin/pip --no-cache-dir install -c $CONSTRAINTS_FILE     `basename $WHEEL_PATH`[all]     --find-links $FIND_LINKS_PATH && sudo rm `basename $WHEEL_PATH` # buildkit
                        
# 2025-01-16 04:17:11  95.87MB 复制新文件或目录到容器中
COPY .whl .whl # buildkit
                        
# 2025-01-16 04:17:10  67.23MB 复制新文件或目录到容器中
COPY .whl/ray-2.41.0-cp39-cp39-manylinux2014_x86_64.whl . # buildkit
                        
# 2025-01-16 04:17:10  0.00B 定义构建参数
ARG CONSTRAINTS_FILE=requirements_compiled.txt
                        
# 2025-01-16 04:17:10  0.00B 定义构建参数
ARG FIND_LINKS_PATH=.whl
                        
# 2025-01-16 04:17:10  0.00B 定义构建参数
ARG WHEEL_PATH
                        
# 2025-01-14 02:30:09  0.00B 设置工作目录为/home/ray
WORKDIR /home/ray
                        
# 2025-01-14 02:30:09  743.09MB 执行命令并创建新的镜像层
RUN |7 BASE_IMAGE=nvidia/cuda:12.1.1-cudnn8-devel-ubuntu22.04 AUTOSCALER=autoscaler DEBIAN_FRONTEND=noninteractive PYTHON_VERSION=3.9 HOSTTYPE=x86_64 RAY_UID=1000 RAY_GID=100 /bin/bash -c /dev/pipes/EOF # buildkit
                        
# 2025-01-14 02:29:08  0.00B 
SHELL [/bin/bash -c]
                        
# 2025-01-14 02:29:08  59.53KB 复制新文件或目录到容器中
COPY python/requirements_compiled.txt /home/ray/requirements_compiled.txt # buildkit
                        
# 2025-01-14 02:29:08  0.00B 设置环境变量 HOME
ENV HOME=/home/ray
                        
# 2025-01-14 02:29:08  0.00B 指定运行容器时使用的用户
USER 1000
                        
# 2025-01-14 02:29:08  308.20MB 执行命令并创建新的镜像层
RUN |7 BASE_IMAGE=nvidia/cuda:12.1.1-cudnn8-devel-ubuntu22.04 AUTOSCALER=autoscaler DEBIAN_FRONTEND=noninteractive PYTHON_VERSION=3.9 HOSTTYPE=x86_64 RAY_UID=1000 RAY_GID=100 /bin/sh -c /dev/pipes/EOF # buildkit
                        
# 2025-01-14 02:29:08  0.00B 定义构建参数
ARG RAY_GID=100
                        
# 2025-01-14 02:29:08  0.00B 定义构建参数
ARG RAY_UID=1000
                        
# 2025-01-14 02:29:08  0.00B 定义构建参数
ARG HOSTTYPE=x86_64
                        
# 2025-01-14 02:29:08  0.00B 定义构建参数
ARG PYTHON_VERSION=3.9
                        
# 2025-01-14 02:29:08  0.00B 定义构建参数
ARG DEBIAN_FRONTEND=noninteractive
                        
# 2025-01-14 02:29:08  0.00B 设置环境变量 PATH
ENV PATH=/home/ray/anaconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2025-01-14 02:29:08  0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
                        
# 2025-01-14 02:29:08  0.00B 设置环境变量 LC_ALL
ENV LC_ALL=C.UTF-8
                        
# 2025-01-14 02:29:08  0.00B 设置环境变量 TZ
ENV TZ=America/Los_Angeles
                        
# 2025-01-14 02:29:08  0.00B 定义构建参数
ARG AUTOSCALER=autoscaler
                        
# 2025-01-14 02:29:08  0.00B 定义构建参数
ARG BASE_IMAGE
                        
# 2023-11-10 13:52:16  2.45GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     ${NV_CUDNN_PACKAGE}     ${NV_CUDNN_PACKAGE_DEV}     && apt-mark hold ${NV_CUDNN_PACKAGE_NAME}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:52:16  0.00B 添加元数据标签
LABEL com.nvidia.cudnn.version=8.9.0.131
                        
# 2023-11-10 13:52:16  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:52:16  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:52:16  0.00B 设置环境变量 NV_CUDNN_PACKAGE_DEV
ENV NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1
                        
# 2023-11-10 13:52:16  0.00B 设置环境变量 NV_CUDNN_PACKAGE
ENV NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1
                        
# 2023-11-10 13:52:16  0.00B 设置环境变量 NV_CUDNN_PACKAGE_NAME
ENV NV_CUDNN_PACKAGE_NAME=libcudnn8
                        
# 2023-11-10 13:52:16  0.00B 设置环境变量 NV_CUDNN_VERSION
ENV NV_CUDNN_VERSION=8.9.0.131
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-11-10 13:25:51  385.69KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 13:25:51  4.79GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-dev-12-1=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-12-1=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-12-1=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-12-1=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-12-1=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-12-1=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:25:51  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:25:51  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=12.1.0.40-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=12.1.105-1
                        
# 2023-11-10 13:25:51  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
                        
# 2023-11-10 13:13:35  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 13:13:35  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 13:13:35  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 13:13:35  261.40KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 13:13:35  2.01GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-12-1=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-12-1=${NV_NVTX_VERSION}     libcusparse-12-1=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:13:35  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:13:35  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.17.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=12.1.3.1-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=12.1.0.106-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=12.1.0.40-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=12.1.105-1
                        
# 2023-11-10 13:13:35  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=12.1.1-1
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 13:08:12  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 13:08:12  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 13:08:12  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 13:08:11  149.59MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-12-1=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=12.1.1
                        
# 2023-11-10 13:07:58  10.56MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb &&     dpkg -i cuda-keyring_1.0-1_all.deb &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 13:07:58  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 13:07:58  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=12.1.105-1
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
                        
# 2023-11-10 13:07:58  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-05 15:33:32  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-05 15:33:32  77.82MB 
/bin/sh -c #(nop) ADD file:63d5ab3ef0aab308c0e71cb67292c5467f60deafa9b0418cbb220affcd078444 in / 
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:643e513ff6f493b8a7901f07490b8bdda2b7bf937062e849b62c6f723a59ef20",
    "RepoTags": [
        "rayproject/ray:2.41.0-py39-gpu",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray:2.41.0-py39-gpu"
    ],
    "RepoDigests": [
        "rayproject/ray@sha256:2eb8d7b37cf6d0facf9f89e3bdaf012a57b1f033c20fd0d79f741c091deb7407",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/rayproject/ray@sha256:2eb8d7b37cf6d0facf9f89e3bdaf012a57b1f033c20fd0d79f741c091deb7407"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-01-15T20:17:49.13233451Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "1000",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/home/ray/anaconda3/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=12.1 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471 brand=tesla,driver\u003e=525,driver\u003c526 brand=unknown,driver\u003e=525,driver\u003c526 brand=nvidia,driver\u003e=525,driver\u003c526 brand=nvidiartx,driver\u003e=525,driver\u003c526 brand=geforce,driver\u003e=525,driver\u003c526 brand=geforcertx,driver\u003e=525,driver\u003c526 brand=quadro,driver\u003e=525,driver\u003c526 brand=quadrortx,driver\u003e=525,driver\u003c526 brand=titan,driver\u003e=525,driver\u003c526 brand=titanrtx,driver\u003e=525,driver\u003c526",
            "NV_CUDA_CUDART_VERSION=12.1.105-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-12-1",
            "CUDA_VERSION=12.1.1",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=12.1.1-1",
            "NV_NVTX_VERSION=12.1.105-1",
            "NV_LIBNPP_VERSION=12.1.0.40-1",
            "NV_LIBNPP_PACKAGE=libnpp-12-1=12.1.0.40-1",
            "NV_LIBCUSPARSE_VERSION=12.1.0.106-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-12-1",
            "NV_LIBCUBLAS_VERSION=12.1.3.1-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-12-1=12.1.3.1-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.17.1-1",
            "NCCL_VERSION=2.17.1-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.17.1-1+cuda12.1",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDA_CUDART_DEV_VERSION=12.1.105-1",
            "NV_NVML_DEV_VERSION=12.1.105-1",
            "NV_LIBCUSPARSE_DEV_VERSION=12.1.0.106-1",
            "NV_LIBNPP_DEV_VERSION=12.1.0.40-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-12-1=12.1.0.40-1",
            "NV_LIBCUBLAS_DEV_VERSION=12.1.3.1-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-12-1",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-12-1=12.1.3.1-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=12.1.1-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-12-1=12.1.1-1",
            "NV_NVPROF_VERSION=12.1.105-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-12-1=12.1.105-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.17.1-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.17.1-1+cuda12.1",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "NV_CUDNN_VERSION=8.9.0.131",
            "NV_CUDNN_PACKAGE_NAME=libcudnn8",
            "NV_CUDNN_PACKAGE=libcudnn8=8.9.0.131-1+cuda12.1",
            "NV_CUDNN_PACKAGE_DEV=libcudnn8-dev=8.9.0.131-1+cuda12.1",
            "TZ=America/Los_Angeles",
            "LC_ALL=C.UTF-8",
            "LANG=C.UTF-8",
            "HOME=/home/ray"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/home/ray",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.cudnn.version": "8.9.0.131",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        },
        "Shell": [
            "/bin/bash",
            "-c"
        ]
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 11498121755,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/6f94d2dc58b8e5c0fcbb2959507b7256bcda71244d7d704c9719dd58a786c2a4/diff:/var/lib/docker/overlay2/3fdc3727397e6b16de7a9b4b584646beb927847ffefbad712e79c63dcdf5c50f/diff:/var/lib/docker/overlay2/b40563c24860ff8c196dea65bc9ed57fb8b38068f66cb7568c9eda5cbf033a38/diff:/var/lib/docker/overlay2/32ce4088e084d43c44b14e3ad85fae91588bfcf4320cbd37d75f9a9e930a9373/diff:/var/lib/docker/overlay2/c86461da7d6b6a546fa58b022418b254317139273579d189d179479e854c36ca/diff:/var/lib/docker/overlay2/7a204350684afd34d879e47914b3dda6bd2d40af8083f3e401c271311b00c795/diff:/var/lib/docker/overlay2/669b166b3e353ed5d5123605021b1873961ea2dfb77d4c3007356588d049e62c/diff:/var/lib/docker/overlay2/a131756669f3cf924c9ce88d963073aeb4848fed4695a0b030f95c1d2b93d1ce/diff:/var/lib/docker/overlay2/c2b95033260b62877ef50df463496e4c300edca9ee5a61d67c5094a4f70af90c/diff:/var/lib/docker/overlay2/4886b35d9ac2f5bc5e6ae9ee6efdb31ebbd11cbbe5f5d6141b75cb6078f8eb0c/diff:/var/lib/docker/overlay2/8d50f4afadda25aeda74c9c792f78c62a9a41e1d49033815172d4e4ecac1f8d2/diff:/var/lib/docker/overlay2/9c318d6c1c49a9309d91206f42669cfd32a821159dd067cc5b9304744751206b/diff:/var/lib/docker/overlay2/d41ebee17e102a091a4b6401a395d8db26a5562996a44cb441bb0e629a8221c3/diff:/var/lib/docker/overlay2/00c787665323d50a93a1cf900002ae20a52941f405617424cab794a710b36263/diff:/var/lib/docker/overlay2/81e2dad992de7733b1e2a5c1dbb2cfe61dc65b41d61c5c855704cb03a17ebf89/diff:/var/lib/docker/overlay2/e55ba8796dcea2ec752dc838db94a72f18cb6939141824844ab9445574850023/diff:/var/lib/docker/overlay2/caf569804f8e2cbc746c17f8611394497f6d3813062237efe14a715d20813ec7/diff:/var/lib/docker/overlay2/e7467795e8c41df583564c8c44e84cd4e40da9f61f927e8233f076bae29d31a9/diff:/var/lib/docker/overlay2/f2905627b4505cda033dd62b5a5dc1676edda5a6e1bda7cd6e6e2048fcf5aee0/diff",
            "MergedDir": "/var/lib/docker/overlay2/8ea3d43439ea4d1b52204b8178ecabe46347d8c15826d067761e3ed7de134da3/merged",
            "UpperDir": "/var/lib/docker/overlay2/8ea3d43439ea4d1b52204b8178ecabe46347d8c15826d067761e3ed7de134da3/diff",
            "WorkDir": "/var/lib/docker/overlay2/8ea3d43439ea4d1b52204b8178ecabe46347d8c15826d067761e3ed7de134da3/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:256d88da41857db513b95b50ba9a9b28491b58c954e25477d5dad8abb465430b",
            "sha256:566cd9dd29d693cf0360da8a73391b843bb6ac8f11b4148acf69c4dc79fa87c5",
            "sha256:6ec2b659c9ab00e2b0fc0acd056577e609cc28649650ec7068b81686f6d1a996",
            "sha256:8afeff4e91d72f3de9232ffc0803f70236e316c27b23ee003e6d47fbfcb6e1c4",
            "sha256:bea30ebbe84377ed36503599c2087cd6bda6f4c96cb59525d238d4a00cf902d3",
            "sha256:b15b1df4adac82b2b46124c743a32d5e982cb6b5ee8a3c04949f809abf8962c9",
            "sha256:83ecbf43a888c43f43b0cd9ec7cf551770790c7aeab17f9536b8820db2c5d45d",
            "sha256:83687aeafbbf74a164a51590ffa36c46e9c41ce4ba3eae9daba1d381c64e5f4b",
            "sha256:3416903c2cc4c9f83472b397741f30365f53543862b03ff5727b42b1a2f938cb",
            "sha256:24e1e08aaa60ea10f478c1b68d9444b8ea74bff76e2547712984b5136e79018e",
            "sha256:7aee75a70a2ff35d4990fab501a025afa498f416cb726ace747ccd7fad6500d4",
            "sha256:0f7c883f1a4f4710753cfa1185d8e60584e41f04fe1693bd8c3ee6700b29c7f3",
            "sha256:4ff5689b808aa801184c81b27fbb971e58b6364a8d61e9a005ce536994b8c69c",
            "sha256:69f015a701191bcc46d7a265bfd12714578ad3e44b874c74e178dc3aec69bb68",
            "sha256:848f39a54f1ffcd62fd5d078bbfb73d8a175eef8d4196f62729547d4a3d4c9c3",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:0508689ef3ce5f15393c4d5a49100c714195d68aa2b6583b2985331fe19eecb7",
            "sha256:617e52fd7ff02b25bde48d4a7ed29882ab842bcf52b79a27206b28263a7983da",
            "sha256:35c390c17f8e381f5b03a72c77b9001f5187ad7b52980bdd203ee2a92de07d57",
            "sha256:610e5690081e29b6daa3b523a3c5d5e9adb2e61573fe409b5c3c0b1389e79ea3"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-09-24T03:07:22.66399212+08:00"
    }
}

更多版本

docker.io/rayproject/ray:2.9.0

linux/amd64 docker.io2.20GB2024-07-17 10:33
912

docker.io/rayproject/ray-ml:2.30.0-py310-gpu

linux/amd64 docker.io21.88GB2024-09-27 00:30
405

docker.io/rayproject/ray:nightly-gpu

linux/amd64 docker.io11.57GB2024-11-21 02:01
254

docker.io/rayproject/ray:2.10.0-py38

linux/amd64 docker.io2.13GB2025-01-06 16:31
197

docker.io/rayproject/ray:2.40.0.160e35-py312-cu123

linux/amd64 docker.io10.23GB2025-01-18 01:27
377

docker.io/rayproject/ray:2.34.0

linux/amd64 docker.io2.22GB2025-02-13 11:57
247

docker.io/rayproject/ray:2.31.0-py310-cu121

linux/amd64 docker.io11.73GB2025-02-22 01:07
365

docker.io/rayproject/ray-ml:2.33.0.914af0-py311

linux/amd64 docker.io23.01GB2025-03-10 04:27
139

docker.io/rayproject/ray:2.39.0-py310-cpu-aarch64

linux/arm64 docker.io2.40GB2025-03-20 17:16
217

docker.io/rayproject/ray:2.41.0

linux/amd64 docker.io2.21GB2025-04-25 17:36
167

docker.io/rayproject/ray:2.44.0-py310-cpu

linux/amd64 docker.io2.08GB2025-07-08 11:06
130

docker.io/rayproject/ray:2.46.0

linux/amd64 docker.io2.09GB2025-09-08 12:07
55

docker.io/rayproject/ray:nightly-py312-cu128

linux/amd64 docker.io12.57GB2025-09-09 11:39
59

docker.io/rayproject/ray:2.41.0-py39-cpu

linux/amd64 docker.io2.21GB2025-09-23 20:26
9

docker.io/rayproject/ray:2.41.0-py39-gpu

linux/amd64 docker.io11.50GB2025-09-24 03:09
6