docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel linux/amd64

docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel - 国内下载镜像源 浏览次数:14 安全受验证的发布者-Pytorch

PyTorch是一个深度学习框架,旨在简化机器学习算法的实现和部署。该镜像提供了一个基于Python 3.x的环境,可以用于快速启动和测试PyTorch项目。

源镜像 docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel
国内镜像 swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel
镜像ID sha256:42de3de83051ba24014ec99f1405966c52f7be03df8d8141c9f282f087adf8f6
镜像TAG 2.7.1-cuda11.8-cudnn9-devel
大小 13.76GB
镜像源 docker.io
项目信息 Docker-Hub主页 🚀项目TAG 🚀
CMD
启动入口 /opt/nvidia/nvidia_entrypoint.sh
工作目录 /workspace
OS/平台 linux/amd64
浏览量 14 次
贡献者
镜像创建 2025-06-04T18:27:25.879779436Z
同步时间 2025-10-12 02:59
更新时间 2025-10-13 05:33
环境变量
PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin NVARCH=x86_64 NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 NV_CUDA_CUDART_VERSION=11.8.89-1 NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8 CUDA_VERSION=11.8.0 LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 NVIDIA_VISIBLE_DEVICES=all NVIDIA_DRIVER_CAPABILITIES=compute,utility NV_CUDA_LIB_VERSION=11.8.0-1 NV_NVTX_VERSION=11.8.86-1 NV_LIBNPP_VERSION=11.8.0.86-1 NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1 NV_LIBCUSPARSE_VERSION=11.7.5.86-1 NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8 NV_LIBCUBLAS_VERSION=11.11.3.6-1 NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1 NV_LIBNCCL_PACKAGE_NAME=libnccl2 NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1 NCCL_VERSION=2.15.5-1 NV_LIBNCCL_PACKAGE=libnccl2=2.15.5-1+cuda11.8 NVIDIA_PRODUCT_NAME=CUDA NV_CUDA_CUDART_DEV_VERSION=11.8.89-1 NV_NVML_DEV_VERSION=11.8.86-1 NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1 NV_LIBNPP_DEV_VERSION=11.8.0.86-1 NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1 NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1 NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8 NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1 NV_CUDA_NSIGHT_COMPUTE_VERSION=11.8.0-1 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-8=11.8.0-1 NV_NVPROF_VERSION=11.8.87-1 NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1 NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1 NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.15.5-1+cuda11.8 LIBRARY_PATH=/usr/local/cuda/lib64/stubs PYTORCH_VERSION=2.7.1
镜像标签
nvidia_driver: com.nvidia.volumes.needed NVIDIA CORPORATION <cudatools@nvidia.com>: maintainer ubuntu: org.opencontainers.image.ref.name 22.04: org.opencontainers.image.version

Docker拉取命令

docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel
docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel  docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel

Containerd拉取命令

ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel
ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel  docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel

Shell快速替换命令

sed -i 's#pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel#swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel#' deployment.yaml

Ansible快速分发-Docker

#ansible k8s -m shell -a 'docker pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel && docker tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel  docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel'

Ansible快速分发-Containerd

#ansible k8s -m shell -a 'ctr images pull swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel && ctr images tag  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel  docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel'

镜像构建历史


# 2025-06-05 02:27:25  0.00B 设置工作目录为/workspace
WORKDIR /workspace
                        
# 2025-06-05 02:27:25  0.00B 设置环境变量 PYTORCH_VERSION
ENV PYTORCH_VERSION=2.7.1
                        
# 2025-06-05 02:27:25  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2025-06-05 02:27:25  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2025-06-05 02:27:25  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2025-06-05 02:27:25  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2025-06-05 02:27:25  0.00B 设置环境变量 PATH
ENV PATH=/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2025-06-05 02:27:25  0.00B 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.7.1 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=11.8.0 /bin/sh -c if test -n "${TRITON_VERSION}" -a "${TARGETPLATFORM}" != "linux/arm64"; then         DEBIAN_FRONTEND=noninteractive apt install -y --no-install-recommends gcc;         rm -rf /var/lib/apt/lists/*;     fi # buildkit
                        
# 2025-06-05 02:27:25  6.38GB 复制新文件或目录到容器中
COPY /opt/conda /opt/conda # buildkit
                        
# 2025-06-05 02:23:31  4.91MB 执行命令并创建新的镜像层
RUN |4 PYTORCH_VERSION=2.7.1 TRITON_VERSION= TARGETPLATFORM=linux/amd64 CUDA_VERSION=11.8.0 /bin/sh -c apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends         ca-certificates         libjpeg-dev         libpng-dev         && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2025-06-05 02:23:31  0.00B 添加元数据标签
LABEL com.nvidia.volumes.needed=nvidia_driver
                        
# 2025-06-05 02:23:31  0.00B 定义构建参数
ARG CUDA_VERSION=11.8.0
                        
# 2025-06-05 02:23:31  0.00B 定义构建参数
ARG TARGETPLATFORM=linux/amd64
                        
# 2025-06-05 02:23:31  0.00B 定义构建参数
ARG TRITON_VERSION=
                        
# 2025-06-05 02:23:31  0.00B 定义构建参数
ARG PYTORCH_VERSION=2.7.1
                        
# 2023-11-10 14:55:21  0.00B 设置环境变量 LIBRARY_PATH
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs
                        
# 2023-11-10 14:55:21  383.52KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_DEV_PACKAGE_NAME} ${NV_LIBNCCL_DEV_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 14:55:17  4.72GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-dev-11-8=${NV_CUDA_CUDART_DEV_VERSION}     cuda-command-line-tools-11-8=${NV_CUDA_LIB_VERSION}     cuda-minimal-build-11-8=${NV_CUDA_LIB_VERSION}     cuda-libraries-dev-11-8=${NV_CUDA_LIB_VERSION}     cuda-nvml-dev-11-8=${NV_NVML_DEV_VERSION}     ${NV_NVPROF_DEV_PACKAGE}     ${NV_LIBNPP_DEV_PACKAGE}     libcusparse-dev-11-8=${NV_LIBCUSPARSE_DEV_VERSION}     ${NV_LIBCUBLAS_DEV_PACKAGE}     ${NV_LIBNCCL_DEV_PACKAGE}     ${NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:55:17  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:55:17  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE
ENV NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.15.5-1+cuda11.8
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.15.5-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_VERSION
ENV NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNCCL_DEV_PACKAGE_NAME
ENV NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_NVPROF_DEV_PACKAGE
ENV NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_NVPROF_VERSION
ENV NV_NVPROF_VERSION=11.8.87-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE
ENV NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-8=11.8.0-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_CUDA_NSIGHT_COMPUTE_VERSION
ENV NV_CUDA_NSIGHT_COMPUTE_VERSION=11.8.0-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE
ENV NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_PACKAGE_NAME
ENV NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBCUBLAS_DEV_VERSION
ENV NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNPP_DEV_PACKAGE
ENV NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBNPP_DEV_VERSION
ENV NV_LIBNPP_DEV_VERSION=11.8.0.86-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_LIBCUSPARSE_DEV_VERSION
ENV NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_NVML_DEV_VERSION
ENV NV_NVML_DEV_VERSION=11.8.86-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_CUDA_CUDART_DEV_VERSION
ENV NV_CUDA_CUDART_DEV_VERSION=11.8.89-1
                        
# 2023-11-10 14:55:17  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.8.0-1
                        
# 2023-11-10 14:42:37  0.00B 配置容器启动时运行的命令
ENTRYPOINT ["/opt/nvidia/nvidia_entrypoint.sh"]
                        
# 2023-11-10 14:42:37  0.00B 设置环境变量 NVIDIA_PRODUCT_NAME
ENV NVIDIA_PRODUCT_NAME=CUDA
                        
# 2023-11-10 14:42:37  2.53KB 复制新文件或目录到容器中
COPY nvidia_entrypoint.sh /opt/nvidia/ # buildkit
                        
# 2023-11-10 14:42:37  3.06KB 复制新文件或目录到容器中
COPY entrypoint.d/ /opt/nvidia/entrypoint.d/ # buildkit
                        
# 2023-11-10 14:42:37  260.16KB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-mark hold ${NV_LIBCUBLAS_PACKAGE_NAME} ${NV_LIBNCCL_PACKAGE_NAME} # buildkit
                        
# 2023-11-10 14:42:36  2.41GB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-libraries-11-8=${NV_CUDA_LIB_VERSION}     ${NV_LIBNPP_PACKAGE}     cuda-nvtx-11-8=${NV_NVTX_VERSION}     libcusparse-11-8=${NV_LIBCUSPARSE_VERSION}     ${NV_LIBCUBLAS_PACKAGE}     ${NV_LIBNCCL_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:42:36  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:42:36  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE
ENV NV_LIBNCCL_PACKAGE=libnccl2=2.15.5-1+cuda11.8
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NCCL_VERSION
ENV NCCL_VERSION=2.15.5-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_VERSION
ENV NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNCCL_PACKAGE_NAME
ENV NV_LIBNCCL_PACKAGE_NAME=libnccl2
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE
ENV NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBCUBLAS_VERSION
ENV NV_LIBCUBLAS_VERSION=11.11.3.6-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBCUBLAS_PACKAGE_NAME
ENV NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBCUSPARSE_VERSION
ENV NV_LIBCUSPARSE_VERSION=11.7.5.86-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNPP_PACKAGE
ENV NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_LIBNPP_VERSION
ENV NV_LIBNPP_VERSION=11.8.0.86-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_NVTX_VERSION
ENV NV_NVTX_VERSION=11.8.86-1
                        
# 2023-11-10 14:42:36  0.00B 设置环境变量 NV_CUDA_LIB_VERSION
ENV NV_CUDA_LIB_VERSION=11.8.0-1
                        
# 2023-11-10 14:37:16  0.00B 设置环境变量 NVIDIA_DRIVER_CAPABILITIES
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
                        
# 2023-11-10 14:37:16  0.00B 设置环境变量 NVIDIA_VISIBLE_DEVICES
ENV NVIDIA_VISIBLE_DEVICES=all
                        
# 2023-11-10 14:37:16  17.29KB 复制新文件或目录到容器中
COPY NGC-DL-CONTAINER-LICENSE / # buildkit
                        
# 2023-11-10 14:37:16  0.00B 设置环境变量 LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
                        
# 2023-11-10 14:37:16  0.00B 设置环境变量 PATH
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
                        
# 2023-11-10 14:37:16  46.00B 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf     && echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf # buildkit
                        
# 2023-11-10 14:37:16  150.67MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     cuda-cudart-11-8=${NV_CUDA_CUDART_VERSION}     ${NV_CUDA_COMPAT_PACKAGE}     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 CUDA_VERSION
ENV CUDA_VERSION=11.8.0
                        
# 2023-11-10 14:37:01  10.56MB 执行命令并创建新的镜像层
RUN |1 TARGETARCH=amd64 /bin/sh -c apt-get update && apt-get install -y --no-install-recommends     gnupg2 curl ca-certificates &&     curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${NVARCH}/cuda-keyring_1.0-1_all.deb &&     dpkg -i cuda-keyring_1.0-1_all.deb &&     apt-get purge --autoremove -y curl     && rm -rf /var/lib/apt/lists/* # buildkit
                        
# 2023-11-10 14:37:01  0.00B 添加元数据标签
LABEL maintainer=NVIDIA CORPORATION <cudatools@nvidia.com>
                        
# 2023-11-10 14:37:01  0.00B 定义构建参数
ARG TARGETARCH
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 NV_CUDA_COMPAT_PACKAGE
ENV NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 NV_CUDA_CUDART_VERSION
ENV NV_CUDA_CUDART_VERSION=11.8.89-1
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 NVIDIA_REQUIRE_CUDA brand brand brand brand brand brand brand brand brand brand
ENV NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471
                        
# 2023-11-10 14:37:01  0.00B 设置环境变量 NVARCH
ENV NVARCH=x86_64
                        
# 2023-10-05 15:33:32  0.00B 
/bin/sh -c #(nop)  CMD ["/bin/bash"]
                        
# 2023-10-05 15:33:32  77.82MB 
/bin/sh -c #(nop) ADD file:63d5ab3ef0aab308c0e71cb67292c5467f60deafa9b0418cbb220affcd078444 in / 
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.version=22.04
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  LABEL org.opencontainers.image.ref.name=ubuntu
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG LAUNCHPAD_BUILD_ARCH
                        
# 2023-10-05 15:33:30  0.00B 
/bin/sh -c #(nop)  ARG RELEASE
                        
                    

镜像信息

{
    "Id": "sha256:42de3de83051ba24014ec99f1405966c52f7be03df8d8141c9f282f087adf8f6",
    "RepoTags": [
        "pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel"
    ],
    "RepoDigests": [
        "pytorch/pytorch@sha256:5a046e4e3364b063a17854387b8820ad3f42ed197a089196bce8f2bd68f275a8",
        "swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/pytorch/pytorch@sha256:5a046e4e3364b063a17854387b8820ad3f42ed197a089196bce8f2bd68f275a8"
    ],
    "Parent": "",
    "Comment": "buildkit.dockerfile.v0",
    "Created": "2025-06-04T18:27:25.879779436Z",
    "Container": "",
    "ContainerConfig": null,
    "DockerVersion": "",
    "Author": "",
    "Config": {
        "Hostname": "",
        "Domainname": "",
        "User": "",
        "AttachStdin": false,
        "AttachStdout": false,
        "AttachStderr": false,
        "Tty": false,
        "OpenStdin": false,
        "StdinOnce": false,
        "Env": [
            "PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
            "NVARCH=x86_64",
            "NVIDIA_REQUIRE_CUDA=cuda\u003e=11.8 brand=tesla,driver\u003e=470,driver\u003c471 brand=unknown,driver\u003e=470,driver\u003c471 brand=nvidia,driver\u003e=470,driver\u003c471 brand=nvidiartx,driver\u003e=470,driver\u003c471 brand=geforce,driver\u003e=470,driver\u003c471 brand=geforcertx,driver\u003e=470,driver\u003c471 brand=quadro,driver\u003e=470,driver\u003c471 brand=quadrortx,driver\u003e=470,driver\u003c471 brand=titan,driver\u003e=470,driver\u003c471 brand=titanrtx,driver\u003e=470,driver\u003c471",
            "NV_CUDA_CUDART_VERSION=11.8.89-1",
            "NV_CUDA_COMPAT_PACKAGE=cuda-compat-11-8",
            "CUDA_VERSION=11.8.0",
            "LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64",
            "NVIDIA_VISIBLE_DEVICES=all",
            "NVIDIA_DRIVER_CAPABILITIES=compute,utility",
            "NV_CUDA_LIB_VERSION=11.8.0-1",
            "NV_NVTX_VERSION=11.8.86-1",
            "NV_LIBNPP_VERSION=11.8.0.86-1",
            "NV_LIBNPP_PACKAGE=libnpp-11-8=11.8.0.86-1",
            "NV_LIBCUSPARSE_VERSION=11.7.5.86-1",
            "NV_LIBCUBLAS_PACKAGE_NAME=libcublas-11-8",
            "NV_LIBCUBLAS_VERSION=11.11.3.6-1",
            "NV_LIBCUBLAS_PACKAGE=libcublas-11-8=11.11.3.6-1",
            "NV_LIBNCCL_PACKAGE_NAME=libnccl2",
            "NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1",
            "NCCL_VERSION=2.15.5-1",
            "NV_LIBNCCL_PACKAGE=libnccl2=2.15.5-1+cuda11.8",
            "NVIDIA_PRODUCT_NAME=CUDA",
            "NV_CUDA_CUDART_DEV_VERSION=11.8.89-1",
            "NV_NVML_DEV_VERSION=11.8.86-1",
            "NV_LIBCUSPARSE_DEV_VERSION=11.7.5.86-1",
            "NV_LIBNPP_DEV_VERSION=11.8.0.86-1",
            "NV_LIBNPP_DEV_PACKAGE=libnpp-dev-11-8=11.8.0.86-1",
            "NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1",
            "NV_LIBCUBLAS_DEV_PACKAGE_NAME=libcublas-dev-11-8",
            "NV_LIBCUBLAS_DEV_PACKAGE=libcublas-dev-11-8=11.11.3.6-1",
            "NV_CUDA_NSIGHT_COMPUTE_VERSION=11.8.0-1",
            "NV_CUDA_NSIGHT_COMPUTE_DEV_PACKAGE=cuda-nsight-compute-11-8=11.8.0-1",
            "NV_NVPROF_VERSION=11.8.87-1",
            "NV_NVPROF_DEV_PACKAGE=cuda-nvprof-11-8=11.8.87-1",
            "NV_LIBNCCL_DEV_PACKAGE_NAME=libnccl-dev",
            "NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1",
            "NV_LIBNCCL_DEV_PACKAGE=libnccl-dev=2.15.5-1+cuda11.8",
            "LIBRARY_PATH=/usr/local/cuda/lib64/stubs",
            "PYTORCH_VERSION=2.7.1"
        ],
        "Cmd": null,
        "Image": "",
        "Volumes": null,
        "WorkingDir": "/workspace",
        "Entrypoint": [
            "/opt/nvidia/nvidia_entrypoint.sh"
        ],
        "OnBuild": null,
        "Labels": {
            "com.nvidia.volumes.needed": "nvidia_driver",
            "maintainer": "NVIDIA CORPORATION \u003ccudatools@nvidia.com\u003e",
            "org.opencontainers.image.ref.name": "ubuntu",
            "org.opencontainers.image.version": "22.04"
        }
    },
    "Architecture": "amd64",
    "Os": "linux",
    "Size": 13758442954,
    "GraphDriver": {
        "Data": {
            "LowerDir": "/var/lib/docker/overlay2/a0bdfdb815a874c545b9a30822cbf6b9acf18fae108e8b49635a60a7e910e87f/diff:/var/lib/docker/overlay2/6986418e1689ec71cdfd75d0ffb947a3c620d89245dad3916e117f18c5baeeb5/diff:/var/lib/docker/overlay2/97c363b0f2768cd81d2c7c0dfd05a96781c7dd8e1faa188167b59ca601c1f43e/diff:/var/lib/docker/overlay2/7d1dd7e5140e9b3b3c9159c15de573db851f8bb0797815681a3b57735ab90782/diff:/var/lib/docker/overlay2/988e3cfa489e46c6d9fedec251e2cd173f7d168f5aedd3116e9e0ffb5b9fbf1c/diff:/var/lib/docker/overlay2/c8a2ca125f126fce881f1dd406376fb6d73111da74db7522dd046993c6bdbdd4/diff:/var/lib/docker/overlay2/6bd7b55c931efcce417942969a44875d5dd97eaf34dacc23087bbe342f18033d/diff:/var/lib/docker/overlay2/d92496e1666cc6573b5e3d5de6de705f291f1817b9efa741497ced989af65c2b/diff:/var/lib/docker/overlay2/3dec8936f73414f0b874025bdda41e9f432c1c5c02b7d47dbe1cedc94723abec/diff:/var/lib/docker/overlay2/0e4cbd1058760fc137765023c2aa64b60747fa8d6331b1a1f3ce423f1f02316b/diff:/var/lib/docker/overlay2/b569becc7f2b610238cf8ce3bc96e34fdbf51c6b7c45bbaae0ef96a73f75d233/diff:/var/lib/docker/overlay2/323499de48b31172c71e773eca137f19d5dd07d7859e1652eafa1c54a55d19f2/diff:/var/lib/docker/overlay2/6de035d7126a33b18df45da78938d3a59547725fe42e2a0a70a27ecaa6cedf0d/diff:/var/lib/docker/overlay2/f2905627b4505cda033dd62b5a5dc1676edda5a6e1bda7cd6e6e2048fcf5aee0/diff",
            "MergedDir": "/var/lib/docker/overlay2/45dd71db6e3f23efd389c837fddd5a9cbfa4e783e4ac28f2ad754b96073b4fb4/merged",
            "UpperDir": "/var/lib/docker/overlay2/45dd71db6e3f23efd389c837fddd5a9cbfa4e783e4ac28f2ad754b96073b4fb4/diff",
            "WorkDir": "/var/lib/docker/overlay2/45dd71db6e3f23efd389c837fddd5a9cbfa4e783e4ac28f2ad754b96073b4fb4/work"
        },
        "Name": "overlay2"
    },
    "RootFS": {
        "Type": "layers",
        "Layers": [
            "sha256:256d88da41857db513b95b50ba9a9b28491b58c954e25477d5dad8abb465430b",
            "sha256:e6c05e83c163d632918d1c4906ee088b1e0d93a5bb3acfc6a268da52e76cc945",
            "sha256:d6b19a46b795f8b562888c6e2826a6b11f744ab98543268b4d45ee1af05ed1cf",
            "sha256:c0e21dcee62311c36e1f025307b3186a4b4a034f0b52011704402b39623b6587",
            "sha256:498bbcc60d01b2080fd6fc35117cb82c80ddd4eb8a654ee330dd91587b7ec90b",
            "sha256:bc352a27a0e47d42df7bc06e702351a4f3102d20016484c9613644dba63239e0",
            "sha256:399d155a03b034314cd9ea52e4e1feca44be4cf92ae172ba9c6ce14f5897f0a2",
            "sha256:dcb0f55f81ad931bb976c65730e4bafe7a03936d1fd1bd0fec6a9bcfde23561d",
            "sha256:345cfa465206a6d1cc0812481df7edbc4553b64a26c63ccda0e5b11b0f2bf81b",
            "sha256:23d753990c8d9e30e33dc706e188972e17fd21ae60b51bbce058d6d74aa08d29",
            "sha256:64758552f6fa927694d06ecab82c2a3d1f55e6bfb09c715b6d37f2963eaaa62c",
            "sha256:820643c6eee9a5d202fcc63d651439bdfe85cbf376c989b95b0fb9af99d2b7fd",
            "sha256:8df169cc95123d5e663603c8feaf742ed24a7bf4926a48f5406604283c9c79ed",
            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
            "sha256:adcfd260fbffaad5982001df10f6fbe96bd3ed0ef974f92b04c34dce3da64853"
        ]
    },
    "Metadata": {
        "LastTagTime": "2025-10-12T02:52:42.37177834+08:00"
    }
}

更多版本

docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.71GB2024-07-18 11:25
4464

docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime

linux/amd64 docker.io6.48GB2024-07-26 13:31
2620

docker.io/pytorch/pytorch:2.3.0-cuda12.1-cudnn8-devel

linux/amd64 docker.io17.08GB2024-08-06 11:11
1369

docker.io/pytorch/pytorch:2.4.1-cuda12.4-cudnn9-runtime

linux/amd64 docker.io5.99GB2024-09-21 01:42
1807

docker.io/pytorch/pytorch:2.2.1-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.60GB2024-09-25 04:29
990

docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-runtime

linux/amd64 docker.io6.36GB2024-09-28 00:59
1013

docker.io/pytorch/pytorch:2.1.0-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.39GB2024-10-02 00:43
989

docker.io/pytorch/pytorch:2.4.1-cuda11.8-cudnn9-devel

linux/amd64 docker.io13.63GB2024-10-23 00:32
797

docker.io/pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel

linux/amd64 docker.io13.17GB2024-11-01 00:22
864

docker.io/pytorch/pytorch:2.5.1-cuda12.4-cudnn9-devel

linux/amd64 docker.io13.31GB2024-11-06 01:09
1197

docker.io/pytorch/pytorch:2.5.1-cuda12.4-cudnn9-runtime

linux/amd64 docker.io6.14GB2024-11-06 01:24
1464

docker.io/pytorch/pytorch:2.5.0-cuda12.4-cudnn9-runtime

linux/amd64 docker.io6.13GB2024-11-06 01:38
623

docker.io/pytorch/pytorch:2.5.0-cuda12.4-cudnn9-devel

linux/amd64 docker.io13.30GB2024-11-06 01:51
664

docker.io/pytorch/pytorch:2.5.1-cuda12.1-cudnn9-runtime

linux/amd64 docker.io5.90GB2024-11-07 00:14
1089

docker.io/pytorch/pytorch:2.3.1-cuda11.8-cudnn8-runtime

linux/amd64 docker.io8.17GB2024-11-08 00:19
674

docker.io/pytorch/pytorch:2.3.1-cuda12.1-cudnn8-devel

linux/amd64 docker.io17.08GB2024-11-08 00:39
712

docker.io/pytorch/pytorch:1.13.1-cuda11.6-cudnn8-devel

linux/amd64 docker.io17.52GB2024-11-08 01:12
999

docker.io/pytorch/pytorch:2.1.2-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.33GB2024-12-10 00:33
394

docker.io/pytorch/pytorch:2.2.0-cuda12.1-cudnn8-devel

linux/amd64 docker.io16.99GB2024-12-15 00:21
512

docker.io/pytorch/pytorch:2.1.2-cuda12.1-cudnn8-devel

linux/amd64 docker.io16.58GB2024-12-20 00:05
656

docker.io/pytorch/pytorch:2.1.2-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.22GB2025-01-10 00:32
562

docker.io/pytorch/pytorch:2.0.0-cuda11.7-cudnn8-devel

linux/amd64 docker.io13.10GB2025-01-11 00:22
458

docker.io/pytorch/pytorch:2.2.2-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.74GB2025-01-18 01:16
401

docker.io/pytorch/pytorch:2.2.1-cuda11.8-cudnn8-devel

linux/amd64 docker.io17.70GB2025-02-18 00:39
270

docker.io/pytorch/pytorch:2.6.0-cuda12.6-cudnn9-devel

linux/amd64 docker.io13.16GB2025-02-18 01:17
1437

docker.io/pytorch/pytorch:2.6.0-cuda12.4-cudnn9-runtime

linux/amd64 docker.io6.06GB2025-02-27 00:51
1599

docker.io/pytorch/pytorch:2.5.1-cuda12.1-cudnn9-devel

linux/amd64 docker.io12.84GB2025-02-28 02:38
888

docker.io/pytorch/pytorch:2.6.0-cuda12.4-cudnn9-devel

linux/amd64 docker.io13.23GB2025-03-08 01:36
1008

docker.io/pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel

linux/amd64 docker.io13.71GB2025-03-18 02:23
588

docker.io/pytorch/pytorch:2.1.0-cuda12.1-cudnn8-devel

linux/amd64 docker.io16.56GB2025-04-15 01:43
298

docker.io/pytorch/pytorch:2.7.0-cuda12.8-cudnn9-runtime

linux/amd64 docker.io7.70GB2025-04-25 04:37
1291

docker.io/pytorch/pytorch:1.6.0-cuda10.1-cudnn7-devel

linux/amd64 docker.io7.04GB2025-04-28 16:22
275

docker.io/pytorch/pytorch:2.5.1-cuda11.8-cudnn9-runtime

linux/amd64 docker.io6.32GB2025-05-07 02:16
415

docker.io/pytorch/pytorch:latest

linux/amd64 docker.io7.60GB2025-05-14 01:17
794

docker.io/pytorch/pytorch:2.7.0-cuda12.8-cudnn9-devel

linux/amd64 docker.io16.99GB2025-05-22 02:12
534

docker.io/pytorch/pytorch:2.7.1-cuda12.8-cudnn9-runtime

linux/amd64 docker.io7.60GB2025-07-02 00:58
721

docker.io/pytorch/pytorch:2.7.1-cuda12.8-cudnn9-devel

linux/amd64 docker.io16.89GB2025-07-18 04:22
463

docker.io/pytorch/pytorch:2.3.1-cuda12.1-cudnn8-runtime

linux/amd64 docker.io7.70GB2025-07-24 01:22
212

docker.io/pytorch/pytorch:2.4.1-cuda12.1-cudnn9-runtime

linux/amd64 docker.io5.93GB2025-07-24 02:12
249

docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-runtime

linux/amd64 docker.io6.48GB2025-08-05 01:42
222

docker.io/pytorch/pytorch:2.8.0-cuda12.9-cudnn9-devel

linux/amd64 docker.io18.46GB2025-08-28 02:21
302

docker.io/pytorch/pytorch:2.8.0-cuda12.8-cudnn9-devel

linux/amd64 docker.io16.93GB2025-09-11 01:44
203

docker.io/pytorch/pytorch:2.7.1-cuda11.8-cudnn9-devel

linux/amd64 docker.io13.76GB2025-10-12 02:59
13