镜像构建历史
# 2025-07-15 01:43:16 0.00B 设置默认要执行的命令
CMD ["bash" "start.sh"]
# 2025-07-15 01:43:16 0.00B 设置环境变量 DOCKER
ENV DOCKER=true
# 2025-07-15 01:43:16 0.00B 设置环境变量 WEBUI_BUILD_VERSION
ENV WEBUI_BUILD_VERSION=f966935d1da56a1f9f8691c1f62d68eecc0438fa
# 2025-07-15 01:43:16 0.00B 定义构建参数
ARG BUILD_HASH=f966935d1da56a1f9f8691c1f62d68eecc0438fa
# 2025-07-15 01:43:16 0.00B 指定运行容器时使用的用户
USER 0:0
# 2025-07-15 01:43:16 0.00B 指定检查容器健康状态的命令
HEALTHCHECK &{["CMD-SHELL" "curl --silent --fail http://localhost:${PORT:-8080}/health | jq -ne 'input.status == true' || exit 1"] "0s" "0s" "0s" "0s" '\x00'}
# 2025-07-15 01:43:16 0.00B 声明容器运行时监听的端口
EXPOSE map[8080/tcp:{}]
# 2025-07-15 01:43:16 70.40MB 复制新文件或目录到容器中
COPY --chown=0:0 ./backend . # buildkit
# 2025-07-15 01:43:15 4.94KB 复制新文件或目录到容器中
COPY --chown=0:0 /app/package.json /app/package.json # buildkit
# 2025-07-15 01:43:15 211.19KB 复制新文件或目录到容器中
COPY --chown=0:0 /app/CHANGELOG.md /app/CHANGELOG.md # buildkit
# 2025-07-15 01:43:15 216.15MB 复制新文件或目录到容器中
COPY --chown=0:0 /app/build /app/build # buildkit
# 2025-07-15 01:41:41 3.35GB 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c pip3 install --no-cache-dir uv && if [ "$USE_CUDA" = "true" ]; then pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && uv pip install --system -r requirements.txt --no-cache-dir && python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; else pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && uv pip install --system -r requirements.txt --no-cache-dir && python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; fi; chown -R $UID:$GID /app/backend/data/ # buildkit
# 2025-07-15 01:40:32 2.46KB 复制新文件或目录到容器中
COPY --chown=0:0 ./backend/requirements.txt ./requirements.txt # buildkit
# 2025-07-01 18:08:04 1.02GB 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c if [ "$USE_OLLAMA" = "true" ]; then apt-get update && apt-get install -y --no-install-recommends git build-essential pandoc netcat-openbsd curl && apt-get install -y --no-install-recommends gcc python3-dev && apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && apt-get install -y --no-install-recommends curl jq && curl -fsSL https://ollama.com/install.sh | sh && rm -rf /var/lib/apt/lists/*; else apt-get update && apt-get install -y --no-install-recommends git build-essential pandoc gcc netcat-openbsd curl jq && apt-get install -y --no-install-recommends gcc python3-dev && apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && rm -rf /var/lib/apt/lists/*; fi # buildkit
# 2025-07-01 18:07:22 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c chown -R $UID:$GID /app $HOME # buildkit
# 2025-07-01 18:07:22 36.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c echo -n 00000000-0000-0000-0000-000000000000 > $HOME/.cache/chroma/telemetry_user_id # buildkit
# 2025-07-01 18:07:22 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c mkdir -p $HOME/.cache/chroma # buildkit
# 2025-07-01 18:07:22 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=false USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c if [ $UID -ne 0 ]; then if [ $GID -ne 0 ]; then addgroup --gid $GID app; fi; adduser --uid $UID --gid $GID --home $HOME --disabled-password --no-create-home app; fi # buildkit
# 2025-07-01 18:07:21 0.00B 设置环境变量 HOME
ENV HOME=/root
# 2025-07-01 18:07:21 0.00B 设置工作目录为/app/backend
WORKDIR /app/backend
# 2025-07-01 18:07:21 0.00B 设置环境变量 HF_HOME
ENV HF_HOME=/app/backend/data/cache/embedding/models
# 2025-07-01 18:07:21 0.00B 设置环境变量 TIKTOKEN_ENCODING_NAME TIKTOKEN_CACHE_DIR
ENV TIKTOKEN_ENCODING_NAME=cl100k_base TIKTOKEN_CACHE_DIR=/app/backend/data/cache/tiktoken
# 2025-07-01 18:07:21 0.00B 设置环境变量 RAG_EMBEDDING_MODEL RAG_RERANKING_MODEL SENTENCE_TRANSFORMERS_HOME
ENV RAG_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 RAG_RERANKING_MODEL= SENTENCE_TRANSFORMERS_HOME=/app/backend/data/cache/embedding/models
# 2025-07-01 18:07:21 0.00B 设置环境变量 WHISPER_MODEL WHISPER_MODEL_DIR
ENV WHISPER_MODEL=base WHISPER_MODEL_DIR=/app/backend/data/cache/whisper/models
# 2025-07-01 18:07:21 0.00B 设置环境变量 OPENAI_API_KEY WEBUI_SECRET_KEY SCARF_NO_ANALYTICS DO_NOT_TRACK ANONYMIZED_TELEMETRY
ENV OPENAI_API_KEY= WEBUI_SECRET_KEY= SCARF_NO_ANALYTICS=true DO_NOT_TRACK=true ANONYMIZED_TELEMETRY=false
# 2025-07-01 18:07:21 0.00B 设置环境变量 OLLAMA_BASE_URL OPENAI_API_BASE_URL
ENV OLLAMA_BASE_URL=/ollama OPENAI_API_BASE_URL=
# 2025-07-01 18:07:21 0.00B 设置环境变量 ENV PORT USE_OLLAMA_DOCKER USE_CUDA_DOCKER USE_CUDA_DOCKER_VER USE_EMBEDDING_MODEL_DOCKER USE_RERANKING_MODEL_DOCKER
ENV ENV=prod PORT=8080 USE_OLLAMA_DOCKER=false USE_CUDA_DOCKER=false USE_CUDA_DOCKER_VER=cu128 USE_EMBEDDING_MODEL_DOCKER=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL_DOCKER=
# 2025-07-01 18:07:21 0.00B 定义构建参数
ARG GID=0
# 2025-07-01 18:07:21 0.00B 定义构建参数
ARG UID=0
# 2025-07-01 18:07:21 0.00B 定义构建参数
ARG USE_RERANKING_MODEL=
# 2025-07-01 18:07:21 0.00B 定义构建参数
ARG USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
# 2025-07-01 18:07:21 0.00B 定义构建参数
ARG USE_CUDA_VER=cu128
# 2025-07-01 18:07:21 0.00B 定义构建参数
ARG USE_OLLAMA=false
# 2025-07-01 18:07:21 0.00B 定义构建参数
ARG USE_CUDA=false
# 2025-06-04 07:02:53 0.00B 设置默认要执行的命令
CMD ["python3"]
# 2025-06-04 07:02:53 36.00B 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; for src in idle3 pip3 pydoc3 python3 python3-config; do dst="$(echo "$src" | tr -d 3)"; [ -s "/usr/local/bin/$src" ]; [ ! -e "/usr/local/bin/$dst" ]; ln -svT "$src" "/usr/local/bin/$dst"; done # buildkit
# 2025-06-04 07:02:53 45.82MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; savedAptMark="$(apt-mark showmanual)"; apt-get update; apt-get install -y --no-install-recommends dpkg-dev gcc gnupg libbluetooth-dev libbz2-dev libc6-dev libdb-dev libffi-dev libgdbm-dev liblzma-dev libncursesw5-dev libreadline-dev libsqlite3-dev libssl-dev make tk-dev uuid-dev wget xz-utils zlib1g-dev ; wget -O python.tar.xz "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz"; echo "$PYTHON_SHA256 *python.tar.xz" | sha256sum -c -; wget -O python.tar.xz.asc "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz.asc"; GNUPGHOME="$(mktemp -d)"; export GNUPGHOME; gpg --batch --keyserver hkps://keys.openpgp.org --recv-keys "$GPG_KEY"; gpg --batch --verify python.tar.xz.asc python.tar.xz; gpgconf --kill all; rm -rf "$GNUPGHOME" python.tar.xz.asc; mkdir -p /usr/src/python; tar --extract --directory /usr/src/python --strip-components=1 --file python.tar.xz; rm python.tar.xz; cd /usr/src/python; gnuArch="$(dpkg-architecture --query DEB_BUILD_GNU_TYPE)"; ./configure --build="$gnuArch" --enable-loadable-sqlite-extensions --enable-optimizations --enable-option-checking=fatal --enable-shared $(test "$gnuArch" != 'riscv64-linux-musl' && echo '--with-lto') --with-ensurepip ; nproc="$(nproc)"; EXTRA_CFLAGS="$(dpkg-buildflags --get CFLAGS)"; LDFLAGS="$(dpkg-buildflags --get LDFLAGS)"; LDFLAGS="${LDFLAGS:--Wl},--strip-all"; make -j "$nproc" "EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" "LDFLAGS=${LDFLAGS:-}" ; rm python; make -j "$nproc" "EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" "LDFLAGS=${LDFLAGS:--Wl},-rpath='\$\$ORIGIN/../lib'" python ; make install; cd /; rm -rf /usr/src/python; find /usr/local -depth \( \( -type d -a \( -name test -o -name tests -o -name idle_test \) \) -o \( -type f -a \( -name '*.pyc' -o -name '*.pyo' -o -name 'libpython*.a' \) \) \) -exec rm -rf '{}' + ; ldconfig; apt-mark auto '.*' > /dev/null; apt-mark manual $savedAptMark; find /usr/local -type f -executable -not \( -name '*tkinter*' \) -exec ldd '{}' ';' | awk '/=>/ { so = $(NF-1); if (index(so, "/usr/local/") == 1) { next }; gsub("^/(usr/)?", "", so); printf "*%s\n", so }' | sort -u | xargs -r dpkg-query --search | cut -d: -f1 | sort -u | xargs -r apt-mark manual ; apt-get purge -y --auto-remove -o APT::AutoRemove::RecommendsImportant=false; rm -rf /var/lib/apt/lists/*; export PYTHONDONTWRITEBYTECODE=1; python3 --version; pip3 install --disable-pip-version-check --no-cache-dir --no-compile 'setuptools==65.5.1' 'wheel<0.46' ; pip3 --version # buildkit
# 2025-06-04 07:02:53 0.00B 设置环境变量 PYTHON_SHA256
ENV PYTHON_SHA256=8fb5f9fbc7609fa822cb31549884575db7fd9657cbffb89510b5d7975963a83a
# 2025-06-04 07:02:53 0.00B 设置环境变量 PYTHON_VERSION
ENV PYTHON_VERSION=3.11.13
# 2025-06-04 07:02:53 0.00B 设置环境变量 GPG_KEY
ENV GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D
# 2025-06-04 07:02:53 9.25MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; apt-get update; apt-get install -y --no-install-recommends ca-certificates netbase tzdata ; rm -rf /var/lib/apt/lists/* # buildkit
# 2025-06-04 07:02:53 0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
# 2025-06-04 07:02:53 0.00B 设置环境变量 PATH
ENV PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# 2025-06-04 07:02:53 74.81MB
# debian.sh --arch 'amd64' out/ 'bookworm' '@1751241600'
镜像信息
{
"Id": "sha256:9fd27dc12548d09d8deadc51d07dfe8ac1bb094533e67351847e49913c28bb76",
"RepoTags": [
"ghcr.io/open-webui/open-webui:v0.6.16",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/open-webui/open-webui:v0.6.16"
],
"RepoDigests": [
"ghcr.io/open-webui/open-webui@sha256:8738bc96bc503cdda58ec06a6bc14303e1562b3d826ee49742a9b4a4ede63784",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/open-webui/open-webui@sha256:11db5c991213b43c303488a72c1a3424e318a162a62cabdb09ad6f7deb415a74"
],
"Parent": "",
"Comment": "buildkit.dockerfile.v0",
"Created": "2025-07-14T17:43:16.197988027Z",
"Container": "",
"ContainerConfig": null,
"DockerVersion": "",
"Author": "",
"Config": {
"Hostname": "",
"Domainname": "",
"User": "0:0",
"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,
"ExposedPorts": {
"8080/tcp": {}
},
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": [
"PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"LANG=C.UTF-8",
"GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D",
"PYTHON_VERSION=3.11.13",
"PYTHON_SHA256=8fb5f9fbc7609fa822cb31549884575db7fd9657cbffb89510b5d7975963a83a",
"ENV=prod",
"PORT=8080",
"USE_OLLAMA_DOCKER=false",
"USE_CUDA_DOCKER=false",
"USE_CUDA_DOCKER_VER=cu128",
"USE_EMBEDDING_MODEL_DOCKER=sentence-transformers/all-MiniLM-L6-v2",
"USE_RERANKING_MODEL_DOCKER=",
"OLLAMA_BASE_URL=/ollama",
"OPENAI_API_BASE_URL=",
"OPENAI_API_KEY=",
"WEBUI_SECRET_KEY=",
"SCARF_NO_ANALYTICS=true",
"DO_NOT_TRACK=true",
"ANONYMIZED_TELEMETRY=false",
"WHISPER_MODEL=base",
"WHISPER_MODEL_DIR=/app/backend/data/cache/whisper/models",
"RAG_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2",
"RAG_RERANKING_MODEL=",
"SENTENCE_TRANSFORMERS_HOME=/app/backend/data/cache/embedding/models",
"TIKTOKEN_ENCODING_NAME=cl100k_base",
"TIKTOKEN_CACHE_DIR=/app/backend/data/cache/tiktoken",
"HF_HOME=/app/backend/data/cache/embedding/models",
"HOME=/root",
"WEBUI_BUILD_VERSION=f966935d1da56a1f9f8691c1f62d68eecc0438fa",
"DOCKER=true"
],
"Cmd": [
"bash",
"start.sh"
],
"Healthcheck": {
"Test": [
"CMD-SHELL",
"curl --silent --fail http://localhost:${PORT:-8080}/health | jq -ne 'input.status == true' || exit 1"
]
},
"ArgsEscaped": true,
"Image": "",
"Volumes": null,
"WorkingDir": "/app/backend",
"Entrypoint": null,
"OnBuild": null,
"Labels": {
"org.opencontainers.image.created": "2025-07-14T17:40:10.115Z",
"org.opencontainers.image.description": "User-friendly AI Interface (Supports Ollama, OpenAI API, ...)",
"org.opencontainers.image.licenses": "NOASSERTION",
"org.opencontainers.image.revision": "f966935d1da56a1f9f8691c1f62d68eecc0438fa",
"org.opencontainers.image.source": "https://github.com/open-webui/open-webui",
"org.opencontainers.image.title": "open-webui",
"org.opencontainers.image.url": "https://github.com/open-webui/open-webui",
"org.opencontainers.image.version": "0.6.16"
}
},
"Architecture": "amd64",
"Os": "linux",
"Size": 4784230182,
"GraphDriver": {
"Data": {
"LowerDir": "/var/lib/docker/overlay2/bcb674e4cf8cb6aa5e0c33f14e5f035e2f1f3e5d59eb7626efcb524a24a61153/diff:/var/lib/docker/overlay2/8334b35c6bd2dae87f4ed060c723cad9a4d45f1f05c544b7b00ac3ed5019e77f/diff:/var/lib/docker/overlay2/5c9788d30771d097adb2a328de1cd21cab84238d8cc1cf06d5712b704bdde3ad/diff:/var/lib/docker/overlay2/38643ffc3d997ce1477d569cd96450c2f8e0b7354cf546f41e8e1dedda0ec813/diff:/var/lib/docker/overlay2/7af72664957e082b5e1539de40ea9bec0deef8bcfe6f0b3d7c87eb364ee04b4e/diff:/var/lib/docker/overlay2/a0a78a80790dc172c0a7cd8719843470f56c507d6f6659e9a5cc29c1f6f0714b/diff:/var/lib/docker/overlay2/4597ad89f1b4ca2d1d57c2eaf8221d358125d91567494bafbee29abf7fd92d7f/diff:/var/lib/docker/overlay2/2e85e7412721ae8752c1c0eb794adec942d889ad226d7b1a7f4d4310f1f50067/diff:/var/lib/docker/overlay2/060ebd8e3842f33b723c7d65fe345d8278bb299cb7f78d9d4131c5e11be6b538/diff:/var/lib/docker/overlay2/5ae4c9b9f5a75dd767c0c56b7e5c0368c07f4e0878e8f54e36a4c23118f1eaef/diff:/var/lib/docker/overlay2/cc76820f84688e05bf5e6c7742d6f06236e3a6a93a1e132b130bcea3440ee170/diff:/var/lib/docker/overlay2/fcd5003b45317589be41991dfcb9fc6023bb9eab7287942c9b0237fe48e344bc/diff:/var/lib/docker/overlay2/c6484ae20eb91bb7c4e8f39eb17dd1f0a2ff7186664e0feebfafc5f30c9fac5b/diff:/var/lib/docker/overlay2/ced128c3830bda622bae5938bd48566b724770f09fb6e3369a7a3cbf8719f0c8/diff:/var/lib/docker/overlay2/ef80d2409ff94adb2a6dd095fcaae6c57ed88374cd35d614abdb227caf5e6de4/diff",
"MergedDir": "/var/lib/docker/overlay2/a9646be2fc036071d41c6441727b409dd913e9e8176d98f86dbd57191c767e5c/merged",
"UpperDir": "/var/lib/docker/overlay2/a9646be2fc036071d41c6441727b409dd913e9e8176d98f86dbd57191c767e5c/diff",
"WorkDir": "/var/lib/docker/overlay2/a9646be2fc036071d41c6441727b409dd913e9e8176d98f86dbd57191c767e5c/work"
},
"Name": "overlay2"
},
"RootFS": {
"Type": "layers",
"Layers": [
"sha256:1bb35e8b4de116e84b2ccf614cce4e309b6043bf2cd35543d8394edeaeb587e3",
"sha256:e5b65e4c6bdaf3c7cadef19ac743fd2794a55263b1a8a5223d1ce80db17f80fc",
"sha256:a1061f722fb28743b069a30196d9a7c3d5b16d0d3532c67fdb168040acdd6a2e",
"sha256:546c6f4e2f2c0dedf57fb1aab386b3ab3e23207e24de31966bb7b25d83f315ce",
"sha256:4813f27deb7ab33c724167a6e0f77c03e14e5f2a3f08e4ea81e225ff17f69c81",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:e53a932bdb98b591405ab8795f6f3db8de9290974a8519daf49068b58af889d8",
"sha256:4a96ec33040dcec3b0decbe53965ef9482e3f5526c894dac4005f92f6fa8dffe",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:140bb946980853abbecb1c0452807aa10bd589bf5bf497c0b4351ed5ffb46cc1",
"sha256:eb4eeea759484d45aebde920c6560373a93ffbf20844b98a8895598cab626336",
"sha256:c041fa54634ddd26ed4cc5058606aed4d8d2a31f7cd30953a4904981ce3dc40a",
"sha256:82933d008ba237855e9947d7186487eda7bf3f81abd7c3e4fae0560cab66a396",
"sha256:f877a457d43803daedc91de424a476741ad05345d352ca38610cdc08f49591de",
"sha256:e9a72150fea5d2e3fe11d80092bcb47f16c103a024b54df8b71062f5ad08c231",
"sha256:8ead1fea7a25926edfa7167ef627c7fca548e3f8aec9649b582fd5818616cb8b"
]
},
"Metadata": {
"LastTagTime": "2025-07-15T11:32:43.566649446+08:00"
}
}