镜像构建历史
# 2025-06-16 22:38:42 0.00B 设置默认要执行的命令
CMD ["bash" "start.sh"]
# 2025-06-16 22:38:42 0.00B 设置环境变量 DOCKER
ENV DOCKER=true
# 2025-06-16 22:38:42 0.00B 设置环境变量 WEBUI_BUILD_VERSION
ENV WEBUI_BUILD_VERSION=340d9820b8122035258d6931cd22f1be0a716c74
# 2025-06-16 22:38:42 0.00B 定义构建参数
ARG BUILD_HASH=340d9820b8122035258d6931cd22f1be0a716c74
# 2025-06-16 22:38:42 0.00B 指定运行容器时使用的用户
USER 0:0
# 2025-06-16 22:38:42 0.00B 指定检查容器健康状态的命令
HEALTHCHECK &{["CMD-SHELL" "curl --silent --fail http://localhost:${PORT:-8080}/health | jq -ne 'input.status == true' || exit 1"] "0s" "0s" "0s" "0s" '\x00'}
# 2025-06-16 22:38:42 0.00B 声明容器运行时监听的端口
EXPOSE map[8080/tcp:{}]
# 2025-06-16 22:38:42 70.38MB 复制新文件或目录到容器中
COPY --chown=0:0 ./backend . # buildkit
# 2025-06-16 22:38:41 4.40KB 复制新文件或目录到容器中
COPY --chown=0:0 /app/package.json /app/package.json # buildkit
# 2025-06-16 22:38:41 199.38KB 复制新文件或目录到容器中
COPY --chown=0:0 /app/CHANGELOG.md /app/CHANGELOG.md # buildkit
# 2025-06-16 22:38:41 314.77MB 复制新文件或目录到容器中
COPY --chown=0:0 /app/build /app/build # buildkit
# 2025-06-16 16:49:01 7.91GB 执行命令并创建新的镜像层
RUN |7 USE_CUDA=true USE_OLLAMA=false USE_CUDA_VER=cu126 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c pip3 install --no-cache-dir uv && if [ "$USE_CUDA" = "true" ]; then pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && uv pip install --system -r requirements.txt --no-cache-dir && python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; else pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && uv pip install --system -r requirements.txt --no-cache-dir && python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; fi; chown -R $UID:$GID /app/backend/data/ # buildkit
# 2025-06-16 16:47:01 2.42KB 复制新文件或目录到容器中
COPY --chown=0:0 ./backend/requirements.txt ./requirements.txt # buildkit
# 2025-06-11 16:14:20 1.02GB 执行命令并创建新的镜像层
RUN |7 USE_CUDA=true USE_OLLAMA=false USE_CUDA_VER=cu126 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c if [ "$USE_OLLAMA" = "true" ]; then apt-get update && apt-get install -y --no-install-recommends git build-essential pandoc netcat-openbsd curl && apt-get install -y --no-install-recommends gcc python3-dev && apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && apt-get install -y --no-install-recommends curl jq && curl -fsSL https://ollama.com/install.sh | sh && rm -rf /var/lib/apt/lists/*; else apt-get update && apt-get install -y --no-install-recommends git build-essential pandoc gcc netcat-openbsd curl jq && apt-get install -y --no-install-recommends gcc python3-dev && apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && rm -rf /var/lib/apt/lists/*; fi # buildkit
# 2025-06-11 16:13:41 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=true USE_OLLAMA=false USE_CUDA_VER=cu126 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c chown -R $UID:$GID /app $HOME # buildkit
# 2025-06-11 16:13:41 36.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=true USE_OLLAMA=false USE_CUDA_VER=cu126 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c echo -n 00000000-0000-0000-0000-000000000000 > $HOME/.cache/chroma/telemetry_user_id # buildkit
# 2025-06-11 16:13:40 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=true USE_OLLAMA=false USE_CUDA_VER=cu126 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c mkdir -p $HOME/.cache/chroma # buildkit
# 2025-06-11 16:13:41 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=true USE_OLLAMA=false USE_CUDA_VER=cu126 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c if [ $UID -ne 0 ]; then if [ $GID -ne 0 ]; then addgroup --gid $GID app; fi; adduser --uid $UID --gid $GID --home $HOME --disabled-password --no-create-home app; fi # buildkit
# 2025-06-11 16:13:40 0.00B 设置环境变量 HOME
ENV HOME=/root
# 2025-06-11 16:13:40 0.00B 设置工作目录为/app/backend
WORKDIR /app/backend
# 2025-06-11 16:13:40 0.00B 设置环境变量 HF_HOME
ENV HF_HOME=/app/backend/data/cache/embedding/models
# 2025-06-11 16:13:40 0.00B 设置环境变量 TIKTOKEN_ENCODING_NAME TIKTOKEN_CACHE_DIR
ENV TIKTOKEN_ENCODING_NAME=cl100k_base TIKTOKEN_CACHE_DIR=/app/backend/data/cache/tiktoken
# 2025-06-11 16:13:40 0.00B 设置环境变量 RAG_EMBEDDING_MODEL RAG_RERANKING_MODEL SENTENCE_TRANSFORMERS_HOME
ENV RAG_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 RAG_RERANKING_MODEL= SENTENCE_TRANSFORMERS_HOME=/app/backend/data/cache/embedding/models
# 2025-06-11 16:13:40 0.00B 设置环境变量 WHISPER_MODEL WHISPER_MODEL_DIR
ENV WHISPER_MODEL=base WHISPER_MODEL_DIR=/app/backend/data/cache/whisper/models
# 2025-06-11 16:13:40 0.00B 设置环境变量 OPENAI_API_KEY WEBUI_SECRET_KEY SCARF_NO_ANALYTICS DO_NOT_TRACK ANONYMIZED_TELEMETRY
ENV OPENAI_API_KEY= WEBUI_SECRET_KEY= SCARF_NO_ANALYTICS=true DO_NOT_TRACK=true ANONYMIZED_TELEMETRY=false
# 2025-06-11 16:13:40 0.00B 设置环境变量 OLLAMA_BASE_URL OPENAI_API_BASE_URL
ENV OLLAMA_BASE_URL=/ollama OPENAI_API_BASE_URL=
# 2025-06-11 16:13:40 0.00B 设置环境变量 ENV PORT USE_OLLAMA_DOCKER USE_CUDA_DOCKER USE_CUDA_DOCKER_VER USE_EMBEDDING_MODEL_DOCKER USE_RERANKING_MODEL_DOCKER
ENV ENV=prod PORT=8080 USE_OLLAMA_DOCKER=false USE_CUDA_DOCKER=true USE_CUDA_DOCKER_VER=cu126 USE_EMBEDDING_MODEL_DOCKER=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL_DOCKER=
# 2025-06-11 16:13:40 0.00B 定义构建参数
ARG GID=0
# 2025-06-11 16:13:40 0.00B 定义构建参数
ARG UID=0
# 2025-06-11 16:13:40 0.00B 定义构建参数
ARG USE_RERANKING_MODEL=
# 2025-06-11 16:13:40 0.00B 定义构建参数
ARG USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
# 2025-06-11 16:13:40 0.00B 定义构建参数
ARG USE_CUDA_VER=cu126
# 2025-06-11 16:13:40 0.00B 定义构建参数
ARG USE_OLLAMA=false
# 2025-06-11 16:13:40 0.00B 定义构建参数
ARG USE_CUDA=true
# 2025-06-04 07:02:53 0.00B 设置默认要执行的命令
CMD ["python3"]
# 2025-06-04 07:02:53 36.00B 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; for src in idle3 pip3 pydoc3 python3 python3-config; do dst="$(echo "$src" | tr -d 3)"; [ -s "/usr/local/bin/$src" ]; [ ! -e "/usr/local/bin/$dst" ]; ln -svT "$src" "/usr/local/bin/$dst"; done # buildkit
# 2025-06-04 07:02:53 45.81MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; savedAptMark="$(apt-mark showmanual)"; apt-get update; apt-get install -y --no-install-recommends dpkg-dev gcc gnupg libbluetooth-dev libbz2-dev libc6-dev libdb-dev libffi-dev libgdbm-dev liblzma-dev libncursesw5-dev libreadline-dev libsqlite3-dev libssl-dev make tk-dev uuid-dev wget xz-utils zlib1g-dev ; wget -O python.tar.xz "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz"; echo "$PYTHON_SHA256 *python.tar.xz" | sha256sum -c -; wget -O python.tar.xz.asc "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz.asc"; GNUPGHOME="$(mktemp -d)"; export GNUPGHOME; gpg --batch --keyserver hkps://keys.openpgp.org --recv-keys "$GPG_KEY"; gpg --batch --verify python.tar.xz.asc python.tar.xz; gpgconf --kill all; rm -rf "$GNUPGHOME" python.tar.xz.asc; mkdir -p /usr/src/python; tar --extract --directory /usr/src/python --strip-components=1 --file python.tar.xz; rm python.tar.xz; cd /usr/src/python; gnuArch="$(dpkg-architecture --query DEB_BUILD_GNU_TYPE)"; ./configure --build="$gnuArch" --enable-loadable-sqlite-extensions --enable-optimizations --enable-option-checking=fatal --enable-shared $(test "$gnuArch" != 'riscv64-linux-musl' && echo '--with-lto') --with-ensurepip ; nproc="$(nproc)"; EXTRA_CFLAGS="$(dpkg-buildflags --get CFLAGS)"; LDFLAGS="$(dpkg-buildflags --get LDFLAGS)"; LDFLAGS="${LDFLAGS:--Wl},--strip-all"; make -j "$nproc" "EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" "LDFLAGS=${LDFLAGS:-}" ; rm python; make -j "$nproc" "EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" "LDFLAGS=${LDFLAGS:--Wl},-rpath='\$\$ORIGIN/../lib'" python ; make install; cd /; rm -rf /usr/src/python; find /usr/local -depth \( \( -type d -a \( -name test -o -name tests -o -name idle_test \) \) -o \( -type f -a \( -name '*.pyc' -o -name '*.pyo' -o -name 'libpython*.a' \) \) \) -exec rm -rf '{}' + ; ldconfig; apt-mark auto '.*' > /dev/null; apt-mark manual $savedAptMark; find /usr/local -type f -executable -not \( -name '*tkinter*' \) -exec ldd '{}' ';' | awk '/=>/ { so = $(NF-1); if (index(so, "/usr/local/") == 1) { next }; gsub("^/(usr/)?", "", so); printf "*%s\n", so }' | sort -u | xargs -r dpkg-query --search | cut -d: -f1 | sort -u | xargs -r apt-mark manual ; apt-get purge -y --auto-remove -o APT::AutoRemove::RecommendsImportant=false; rm -rf /var/lib/apt/lists/*; export PYTHONDONTWRITEBYTECODE=1; python3 --version; pip3 install --disable-pip-version-check --no-cache-dir --no-compile 'setuptools==65.5.1' 'wheel<0.46' ; pip3 --version # buildkit
# 2025-06-04 07:02:53 0.00B 设置环境变量 PYTHON_SHA256
ENV PYTHON_SHA256=8fb5f9fbc7609fa822cb31549884575db7fd9657cbffb89510b5d7975963a83a
# 2025-06-04 07:02:53 0.00B 设置环境变量 PYTHON_VERSION
ENV PYTHON_VERSION=3.11.13
# 2025-06-04 07:02:53 0.00B 设置环境变量 GPG_KEY
ENV GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D
# 2025-06-04 07:02:53 9.24MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; apt-get update; apt-get install -y --no-install-recommends ca-certificates netbase tzdata ; rm -rf /var/lib/apt/lists/* # buildkit
# 2025-06-04 07:02:53 0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
# 2025-06-04 07:02:53 0.00B 设置环境变量 PATH
ENV PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# 2025-06-04 07:02:53 74.81MB
# debian.sh --arch 'amd64' out/ 'bookworm' '@1749513600'
镜像信息
{
"Id": "sha256:7014cd407ee91f1850641febf60297a30f020a74540c8c0d6bfc4b302479f7f9",
"RepoTags": [
"ghcr.io/open-webui/open-webui:dev-cuda126",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/open-webui/open-webui:dev-cuda126"
],
"RepoDigests": [
"ghcr.io/open-webui/open-webui@sha256:fe4593168ebd2baccc4bdd84330df038462a1ac4384557c5c71813c8b3a222ba",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/open-webui/open-webui@sha256:26c40bf6c84bc278a38a1a0f7004e6f6f6ac27cc773f5a6bf467eb2136010ebd"
],
"Parent": "",
"Comment": "buildkit.dockerfile.v0",
"Created": "2025-06-16T14:38:42.098076297Z",
"Container": "",
"ContainerConfig": null,
"DockerVersion": "",
"Author": "",
"Config": {
"Hostname": "",
"Domainname": "",
"User": "0:0",
"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,
"ExposedPorts": {
"8080/tcp": {}
},
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": [
"PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"LANG=C.UTF-8",
"GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D",
"PYTHON_VERSION=3.11.13",
"PYTHON_SHA256=8fb5f9fbc7609fa822cb31549884575db7fd9657cbffb89510b5d7975963a83a",
"ENV=prod",
"PORT=8080",
"USE_OLLAMA_DOCKER=false",
"USE_CUDA_DOCKER=true",
"USE_CUDA_DOCKER_VER=cu126",
"USE_EMBEDDING_MODEL_DOCKER=sentence-transformers/all-MiniLM-L6-v2",
"USE_RERANKING_MODEL_DOCKER=",
"OLLAMA_BASE_URL=/ollama",
"OPENAI_API_BASE_URL=",
"OPENAI_API_KEY=",
"WEBUI_SECRET_KEY=",
"SCARF_NO_ANALYTICS=true",
"DO_NOT_TRACK=true",
"ANONYMIZED_TELEMETRY=false",
"WHISPER_MODEL=base",
"WHISPER_MODEL_DIR=/app/backend/data/cache/whisper/models",
"RAG_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2",
"RAG_RERANKING_MODEL=",
"SENTENCE_TRANSFORMERS_HOME=/app/backend/data/cache/embedding/models",
"TIKTOKEN_ENCODING_NAME=cl100k_base",
"TIKTOKEN_CACHE_DIR=/app/backend/data/cache/tiktoken",
"HF_HOME=/app/backend/data/cache/embedding/models",
"HOME=/root",
"WEBUI_BUILD_VERSION=340d9820b8122035258d6931cd22f1be0a716c74",
"DOCKER=true"
],
"Cmd": [
"bash",
"start.sh"
],
"Healthcheck": {
"Test": [
"CMD-SHELL",
"curl --silent --fail http://localhost:${PORT:-8080}/health | jq -ne 'input.status == true' || exit 1"
]
},
"ArgsEscaped": true,
"Image": "",
"Volumes": null,
"WorkingDir": "/app/backend",
"Entrypoint": null,
"OnBuild": null,
"Labels": {
"org.opencontainers.image.created": "2025-06-16T14:34:16.935Z",
"org.opencontainers.image.description": "User-friendly AI Interface (Supports Ollama, OpenAI API, ...)",
"org.opencontainers.image.licenses": "NOASSERTION",
"org.opencontainers.image.revision": "340d9820b8122035258d6931cd22f1be0a716c74",
"org.opencontainers.image.source": "https://github.com/open-webui/open-webui",
"org.opencontainers.image.title": "open-webui",
"org.opencontainers.image.url": "https://github.com/open-webui/open-webui",
"org.opencontainers.image.version": "dev-cuda126"
}
},
"Architecture": "amd64",
"Os": "linux",
"Size": 9448774218,
"GraphDriver": {
"Data": {
"LowerDir": "/var/lib/docker/overlay2/ef366b2c323c004f6e974ed9e3c21f59051a937aea342f804c4ebb7c0a393d9a/diff:/var/lib/docker/overlay2/046cc9518b958bc4a0514f2a67497a56d9e71f16680b1f67d9147004cb55e316/diff:/var/lib/docker/overlay2/0950cc418512be405b9be802bbcaf88b863916b159ed4ddec655ebfa36fd8ffa/diff:/var/lib/docker/overlay2/eedbfb909461350d9672aabce8a0441e743fce34db686a8225fc6676471d8d7f/diff:/var/lib/docker/overlay2/26359cfe8e32928b331cc8a394b371f6ddd79860c08ea08b92e9250110cf1b70/diff:/var/lib/docker/overlay2/68b2c11cdaf98d0b7c0338c1b827dbf7199973210f2b0f2ad2465651376525bd/diff:/var/lib/docker/overlay2/b270ca42e22c346f8e208265f5eff03da43bc1a028584bba611d55cc86dc4ade/diff:/var/lib/docker/overlay2/77c51118540ff04bbf3cdc6904a3f68da64a4fedc4b0f79711659bbd02abe06d/diff:/var/lib/docker/overlay2/26fd6ead70cf5587842c693268086e9d1f7d6b2f882b5ba500443c6e37ab1ab0/diff:/var/lib/docker/overlay2/d11e7b409008b8f1030480689e6d8eafe3974264a47b5cabd956c1c8adffe78b/diff:/var/lib/docker/overlay2/3fecb11dfaa5bc04bcee768be3bcd6cf77ce352f3e35566df34eb633e2849086/diff:/var/lib/docker/overlay2/70d6a7d80dc87a0c29640791c076079575bdb93a990a305b32f1f1b73b7ab7d7/diff:/var/lib/docker/overlay2/9d28daaf32b8bce1fb369dfdfa6ac44d94eb57ca4464e25f398c64dd3c65f4f9/diff:/var/lib/docker/overlay2/030403e8f3a5e03345aba9fc7c613b8f4df37a84ee887cebb55e05a276caedf1/diff:/var/lib/docker/overlay2/45b98cde21d3425efaa9b6bcacad35081dfa9fa54e2fdbab407cfd060f2c20a4/diff",
"MergedDir": "/var/lib/docker/overlay2/af20b6be5ac163a3c2faa9a31487bcf55a18eaa01c04f36c527fae20e43be1f0/merged",
"UpperDir": "/var/lib/docker/overlay2/af20b6be5ac163a3c2faa9a31487bcf55a18eaa01c04f36c527fae20e43be1f0/diff",
"WorkDir": "/var/lib/docker/overlay2/af20b6be5ac163a3c2faa9a31487bcf55a18eaa01c04f36c527fae20e43be1f0/work"
},
"Name": "overlay2"
},
"RootFS": {
"Type": "layers",
"Layers": [
"sha256:7fb72a7d1a8e984ccd01277432de660162a547a00de77151518dc9033cfb8cb4",
"sha256:905dadf3a0ed88106f48ce02feca63f9b8cbdaf38713c0f090fdff68bc849708",
"sha256:d731454f914a582c05b53a9c0ff24018474965a8b77c231c376600b14c9a16af",
"sha256:79d7628d5b6b9722f4d4e8a2c9b5f33b778379018a6a24d74846194ca0b41ad1",
"sha256:db8ecde49300771a7c1989eccf130a81e78513ce0059dd4768f66f1cd1c77201",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:99560b6bfd143b2897f2f74a06183f6d392c9b3851b05f822cfd3fb611fd806b",
"sha256:d2fc9a64302ec49e506054585532904b07041bcacc4428c03e83095c3770945f",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:b27e36fdc5ac86492632f4e032402d920e3cd2c947741afd8c9c472f38a0e8fe",
"sha256:44ee25435e15f9425eecaf72f18a7b5aadd497785f79d79a3e541ee687849e5f",
"sha256:28622f1222ef5056889656a116777d544c7c066f5468d0888755ec21e6149c97",
"sha256:692ae57647e5005edac54f919ee2c073a30dbf0e58ada9345a751b11387cc7d0",
"sha256:61d9c6507c251b1b938b2375c9656614e87091dd485c8204949ab9a0de3046da",
"sha256:23140409a5911a2684f640c3790c59823d706677cf638e532d6e43b0e3df236d",
"sha256:ad9091407c864f16c5651113e16f8c935a0cc090ab1777273784eabe0ffce9ef"
]
},
"Metadata": {
"LastTagTime": "2025-06-17T02:04:48.517599407+08:00"
}
}