镜像构建历史
# 2025-06-16 22:03:51 0.00B 设置默认要执行的命令
CMD ["bash" "start.sh"]
# 2025-06-16 22:03:51 0.00B 设置环境变量 DOCKER
ENV DOCKER=true
# 2025-06-16 22:03:51 0.00B 设置环境变量 WEBUI_BUILD_VERSION
ENV WEBUI_BUILD_VERSION=b6ea043d18930f9d32382708aa58d9c44803979b
# 2025-06-16 22:03:51 0.00B 定义构建参数
ARG BUILD_HASH=b6ea043d18930f9d32382708aa58d9c44803979b
# 2025-06-16 22:03:51 0.00B 指定运行容器时使用的用户
USER 0:0
# 2025-06-16 22:03:51 0.00B 指定检查容器健康状态的命令
HEALTHCHECK &{["CMD-SHELL" "curl --silent --fail http://localhost:${PORT:-8080}/health | jq -ne 'input.status == true' || exit 1"] "0s" "0s" "0s" "0s" '\x00'}
# 2025-06-16 22:03:51 0.00B 声明容器运行时监听的端口
EXPOSE map[8080/tcp:{}]
# 2025-06-16 22:03:51 70.38MB 复制新文件或目录到容器中
COPY --chown=0:0 ./backend . # buildkit
# 2025-06-16 22:03:51 4.40KB 复制新文件或目录到容器中
COPY --chown=0:0 /app/package.json /app/package.json # buildkit
# 2025-06-16 22:03:51 193.85KB 复制新文件或目录到容器中
COPY --chown=0:0 /app/CHANGELOG.md /app/CHANGELOG.md # buildkit
# 2025-06-16 22:03:51 314.77MB 复制新文件或目录到容器中
COPY --chown=0:0 /app/build /app/build # buildkit
# 2025-06-16 16:52:23 9.24GB 执行命令并创建新的镜像层
RUN |7 USE_CUDA=true USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c pip3 install --no-cache-dir uv && if [ "$USE_CUDA" = "true" ]; then pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && uv pip install --system -r requirements.txt --no-cache-dir && python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; else pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && uv pip install --system -r requirements.txt --no-cache-dir && python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; fi; chown -R $UID:$GID /app/backend/data/ # buildkit
# 2025-06-16 16:50:20 2.42KB 复制新文件或目录到容器中
COPY --chown=0:0 ./backend/requirements.txt ./requirements.txt # buildkit
# 2025-06-11 16:14:13 1.02GB 执行命令并创建新的镜像层
RUN |7 USE_CUDA=true USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c if [ "$USE_OLLAMA" = "true" ]; then apt-get update && apt-get install -y --no-install-recommends git build-essential pandoc netcat-openbsd curl && apt-get install -y --no-install-recommends gcc python3-dev && apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && apt-get install -y --no-install-recommends curl jq && curl -fsSL https://ollama.com/install.sh | sh && rm -rf /var/lib/apt/lists/*; else apt-get update && apt-get install -y --no-install-recommends git build-essential pandoc gcc netcat-openbsd curl jq && apt-get install -y --no-install-recommends gcc python3-dev && apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && rm -rf /var/lib/apt/lists/*; fi # buildkit
# 2025-06-11 16:13:34 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=true USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c chown -R $UID:$GID /app $HOME # buildkit
# 2025-06-11 16:13:34 36.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=true USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c echo -n 00000000-0000-0000-0000-000000000000 > $HOME/.cache/chroma/telemetry_user_id # buildkit
# 2025-06-11 16:13:34 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=true USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c mkdir -p $HOME/.cache/chroma # buildkit
# 2025-06-11 16:13:34 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=true USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c if [ $UID -ne 0 ]; then if [ $GID -ne 0 ]; then addgroup --gid $GID app; fi; adduser --uid $UID --gid $GID --home $HOME --disabled-password --no-create-home app; fi # buildkit
# 2025-06-11 16:13:34 0.00B 设置环境变量 HOME
ENV HOME=/root
# 2025-06-11 16:13:34 0.00B 设置工作目录为/app/backend
WORKDIR /app/backend
# 2025-06-11 16:13:34 0.00B 设置环境变量 HF_HOME
ENV HF_HOME=/app/backend/data/cache/embedding/models
# 2025-06-11 16:13:34 0.00B 设置环境变量 TIKTOKEN_ENCODING_NAME TIKTOKEN_CACHE_DIR
ENV TIKTOKEN_ENCODING_NAME=cl100k_base TIKTOKEN_CACHE_DIR=/app/backend/data/cache/tiktoken
# 2025-06-11 16:13:34 0.00B 设置环境变量 RAG_EMBEDDING_MODEL RAG_RERANKING_MODEL SENTENCE_TRANSFORMERS_HOME
ENV RAG_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 RAG_RERANKING_MODEL= SENTENCE_TRANSFORMERS_HOME=/app/backend/data/cache/embedding/models
# 2025-06-11 16:13:34 0.00B 设置环境变量 WHISPER_MODEL WHISPER_MODEL_DIR
ENV WHISPER_MODEL=base WHISPER_MODEL_DIR=/app/backend/data/cache/whisper/models
# 2025-06-11 16:13:34 0.00B 设置环境变量 OPENAI_API_KEY WEBUI_SECRET_KEY SCARF_NO_ANALYTICS DO_NOT_TRACK ANONYMIZED_TELEMETRY
ENV OPENAI_API_KEY= WEBUI_SECRET_KEY= SCARF_NO_ANALYTICS=true DO_NOT_TRACK=true ANONYMIZED_TELEMETRY=false
# 2025-06-11 16:13:34 0.00B 设置环境变量 OLLAMA_BASE_URL OPENAI_API_BASE_URL
ENV OLLAMA_BASE_URL=/ollama OPENAI_API_BASE_URL=
# 2025-06-11 16:13:34 0.00B 设置环境变量 ENV PORT USE_OLLAMA_DOCKER USE_CUDA_DOCKER USE_CUDA_DOCKER_VER USE_EMBEDDING_MODEL_DOCKER USE_RERANKING_MODEL_DOCKER
ENV ENV=prod PORT=8080 USE_OLLAMA_DOCKER=false USE_CUDA_DOCKER=true USE_CUDA_DOCKER_VER=cu128 USE_EMBEDDING_MODEL_DOCKER=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL_DOCKER=
# 2025-06-11 16:13:34 0.00B 定义构建参数
ARG GID=0
# 2025-06-11 16:13:34 0.00B 定义构建参数
ARG UID=0
# 2025-06-11 16:13:34 0.00B 定义构建参数
ARG USE_RERANKING_MODEL=
# 2025-06-11 16:13:34 0.00B 定义构建参数
ARG USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
# 2025-06-11 16:13:34 0.00B 定义构建参数
ARG USE_CUDA_VER=cu128
# 2025-06-11 16:13:34 0.00B 定义构建参数
ARG USE_OLLAMA=false
# 2025-06-11 16:13:34 0.00B 定义构建参数
ARG USE_CUDA=true
# 2025-06-04 07:02:53 0.00B 设置默认要执行的命令
CMD ["python3"]
# 2025-06-04 07:02:53 36.00B 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; for src in idle3 pip3 pydoc3 python3 python3-config; do dst="$(echo "$src" | tr -d 3)"; [ -s "/usr/local/bin/$src" ]; [ ! -e "/usr/local/bin/$dst" ]; ln -svT "$src" "/usr/local/bin/$dst"; done # buildkit
# 2025-06-04 07:02:53 45.81MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; savedAptMark="$(apt-mark showmanual)"; apt-get update; apt-get install -y --no-install-recommends dpkg-dev gcc gnupg libbluetooth-dev libbz2-dev libc6-dev libdb-dev libffi-dev libgdbm-dev liblzma-dev libncursesw5-dev libreadline-dev libsqlite3-dev libssl-dev make tk-dev uuid-dev wget xz-utils zlib1g-dev ; wget -O python.tar.xz "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz"; echo "$PYTHON_SHA256 *python.tar.xz" | sha256sum -c -; wget -O python.tar.xz.asc "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz.asc"; GNUPGHOME="$(mktemp -d)"; export GNUPGHOME; gpg --batch --keyserver hkps://keys.openpgp.org --recv-keys "$GPG_KEY"; gpg --batch --verify python.tar.xz.asc python.tar.xz; gpgconf --kill all; rm -rf "$GNUPGHOME" python.tar.xz.asc; mkdir -p /usr/src/python; tar --extract --directory /usr/src/python --strip-components=1 --file python.tar.xz; rm python.tar.xz; cd /usr/src/python; gnuArch="$(dpkg-architecture --query DEB_BUILD_GNU_TYPE)"; ./configure --build="$gnuArch" --enable-loadable-sqlite-extensions --enable-optimizations --enable-option-checking=fatal --enable-shared $(test "$gnuArch" != 'riscv64-linux-musl' && echo '--with-lto') --with-ensurepip ; nproc="$(nproc)"; EXTRA_CFLAGS="$(dpkg-buildflags --get CFLAGS)"; LDFLAGS="$(dpkg-buildflags --get LDFLAGS)"; LDFLAGS="${LDFLAGS:--Wl},--strip-all"; make -j "$nproc" "EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" "LDFLAGS=${LDFLAGS:-}" ; rm python; make -j "$nproc" "EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" "LDFLAGS=${LDFLAGS:--Wl},-rpath='\$\$ORIGIN/../lib'" python ; make install; cd /; rm -rf /usr/src/python; find /usr/local -depth \( \( -type d -a \( -name test -o -name tests -o -name idle_test \) \) -o \( -type f -a \( -name '*.pyc' -o -name '*.pyo' -o -name 'libpython*.a' \) \) \) -exec rm -rf '{}' + ; ldconfig; apt-mark auto '.*' > /dev/null; apt-mark manual $savedAptMark; find /usr/local -type f -executable -not \( -name '*tkinter*' \) -exec ldd '{}' ';' | awk '/=>/ { so = $(NF-1); if (index(so, "/usr/local/") == 1) { next }; gsub("^/(usr/)?", "", so); printf "*%s\n", so }' | sort -u | xargs -r dpkg-query --search | cut -d: -f1 | sort -u | xargs -r apt-mark manual ; apt-get purge -y --auto-remove -o APT::AutoRemove::RecommendsImportant=false; rm -rf /var/lib/apt/lists/*; export PYTHONDONTWRITEBYTECODE=1; python3 --version; pip3 install --disable-pip-version-check --no-cache-dir --no-compile 'setuptools==65.5.1' 'wheel<0.46' ; pip3 --version # buildkit
# 2025-06-04 07:02:53 0.00B 设置环境变量 PYTHON_SHA256
ENV PYTHON_SHA256=8fb5f9fbc7609fa822cb31549884575db7fd9657cbffb89510b5d7975963a83a
# 2025-06-04 07:02:53 0.00B 设置环境变量 PYTHON_VERSION
ENV PYTHON_VERSION=3.11.13
# 2025-06-04 07:02:53 0.00B 设置环境变量 GPG_KEY
ENV GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D
# 2025-06-04 07:02:53 9.24MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; apt-get update; apt-get install -y --no-install-recommends ca-certificates netbase tzdata ; rm -rf /var/lib/apt/lists/* # buildkit
# 2025-06-04 07:02:53 0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
# 2025-06-04 07:02:53 0.00B 设置环境变量 PATH
ENV PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# 2025-06-04 07:02:53 74.81MB
# debian.sh --arch 'amd64' out/ 'bookworm' '@1749513600'
镜像信息
{
"Id": "sha256:948561ed1fcaf978f76f2f173c20bc479ac70c9aa7dc603e07a4553c140f74d2",
"RepoTags": [
"ghcr.io/open-webui/open-webui:git-b6ea043-cuda",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/open-webui/open-webui:git-b6ea043-cuda"
],
"RepoDigests": [
"ghcr.io/open-webui/open-webui@sha256:b5a3443ed4f13d8c006f0d418bdd16ff35adbda00a6f421395dbbfcc43217f6c",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/open-webui/open-webui@sha256:d4376961aa476a477f9d27150b7f7031fde9421aa174566ae8825a5e7f9f1395"
],
"Parent": "",
"Comment": "buildkit.dockerfile.v0",
"Created": "2025-06-16T14:03:51.696954513Z",
"Container": "",
"ContainerConfig": null,
"DockerVersion": "",
"Author": "",
"Config": {
"Hostname": "",
"Domainname": "",
"User": "0:0",
"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,
"ExposedPorts": {
"8080/tcp": {}
},
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": [
"PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"LANG=C.UTF-8",
"GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D",
"PYTHON_VERSION=3.11.13",
"PYTHON_SHA256=8fb5f9fbc7609fa822cb31549884575db7fd9657cbffb89510b5d7975963a83a",
"ENV=prod",
"PORT=8080",
"USE_OLLAMA_DOCKER=false",
"USE_CUDA_DOCKER=true",
"USE_CUDA_DOCKER_VER=cu128",
"USE_EMBEDDING_MODEL_DOCKER=sentence-transformers/all-MiniLM-L6-v2",
"USE_RERANKING_MODEL_DOCKER=",
"OLLAMA_BASE_URL=/ollama",
"OPENAI_API_BASE_URL=",
"OPENAI_API_KEY=",
"WEBUI_SECRET_KEY=",
"SCARF_NO_ANALYTICS=true",
"DO_NOT_TRACK=true",
"ANONYMIZED_TELEMETRY=false",
"WHISPER_MODEL=base",
"WHISPER_MODEL_DIR=/app/backend/data/cache/whisper/models",
"RAG_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2",
"RAG_RERANKING_MODEL=",
"SENTENCE_TRANSFORMERS_HOME=/app/backend/data/cache/embedding/models",
"TIKTOKEN_ENCODING_NAME=cl100k_base",
"TIKTOKEN_CACHE_DIR=/app/backend/data/cache/tiktoken",
"HF_HOME=/app/backend/data/cache/embedding/models",
"HOME=/root",
"WEBUI_BUILD_VERSION=b6ea043d18930f9d32382708aa58d9c44803979b",
"DOCKER=true"
],
"Cmd": [
"bash",
"start.sh"
],
"Healthcheck": {
"Test": [
"CMD-SHELL",
"curl --silent --fail http://localhost:${PORT:-8080}/health | jq -ne 'input.status == true' || exit 1"
]
},
"ArgsEscaped": true,
"Image": "",
"Volumes": null,
"WorkingDir": "/app/backend",
"Entrypoint": null,
"OnBuild": null,
"Labels": {
"org.opencontainers.image.created": "2025-06-16T13:59:32.680Z",
"org.opencontainers.image.description": "User-friendly AI Interface (Supports Ollama, OpenAI API, ...)",
"org.opencontainers.image.licenses": "NOASSERTION",
"org.opencontainers.image.revision": "b6ea043d18930f9d32382708aa58d9c44803979b",
"org.opencontainers.image.source": "https://github.com/open-webui/open-webui",
"org.opencontainers.image.title": "open-webui",
"org.opencontainers.image.url": "https://github.com/open-webui/open-webui",
"org.opencontainers.image.version": "dev-cuda"
}
},
"Architecture": "amd64",
"Os": "linux",
"Size": 10780783346,
"GraphDriver": {
"Data": {
"LowerDir": "/var/lib/docker/overlay2/0773e6082a73f4fa4dd945c168faa050152412bb45a5506c22c38999a7d04662/diff:/var/lib/docker/overlay2/4db92a30c17d07f40fc02e3ef9a2f33f8d6dd4465224d7a8ea0dd5d0e8de6206/diff:/var/lib/docker/overlay2/953af79ef30dceef190fbc68a315f54be13b5ce16451afafb09975717f92fc66/diff:/var/lib/docker/overlay2/18f8dbb4ca5b0deca9a131c88b12318f995876beb85d8a250d551f8efbf7caf2/diff:/var/lib/docker/overlay2/d6e88a2742d9748731f0791e62db77aac7f9c1b017eb2129607b365e3080acd9/diff:/var/lib/docker/overlay2/2eb4e53567ec3085971e6f11c2446d4f939fff35532a6c8f90196683e25f78de/diff:/var/lib/docker/overlay2/7873b411f797b8e82b62c465b9b8dfe6478a5daabc52d75ec4a74893ac8cdd4b/diff:/var/lib/docker/overlay2/b7919d4a48765c7f5c85db2ab76b3d767fda9d3ed765148ef358fe7f39c03c8c/diff:/var/lib/docker/overlay2/af459aae158cd1dc78bf40d79c246e51421f3d2e23b4e16b493f8d3b689ff44e/diff:/var/lib/docker/overlay2/c50d3b417db305508407bd01ede29fa431ef4b670bd232467852e2da4e26ef98/diff:/var/lib/docker/overlay2/0cbaca0048db6de0bd3193f783e76666e8c21b729b41155601f6cd14870bd721/diff:/var/lib/docker/overlay2/70d6a7d80dc87a0c29640791c076079575bdb93a990a305b32f1f1b73b7ab7d7/diff:/var/lib/docker/overlay2/9d28daaf32b8bce1fb369dfdfa6ac44d94eb57ca4464e25f398c64dd3c65f4f9/diff:/var/lib/docker/overlay2/030403e8f3a5e03345aba9fc7c613b8f4df37a84ee887cebb55e05a276caedf1/diff:/var/lib/docker/overlay2/45b98cde21d3425efaa9b6bcacad35081dfa9fa54e2fdbab407cfd060f2c20a4/diff",
"MergedDir": "/var/lib/docker/overlay2/e496e357d00231fa0bf5317bf509cbb34014b70b49e0bfb677090716891185f1/merged",
"UpperDir": "/var/lib/docker/overlay2/e496e357d00231fa0bf5317bf509cbb34014b70b49e0bfb677090716891185f1/diff",
"WorkDir": "/var/lib/docker/overlay2/e496e357d00231fa0bf5317bf509cbb34014b70b49e0bfb677090716891185f1/work"
},
"Name": "overlay2"
},
"RootFS": {
"Type": "layers",
"Layers": [
"sha256:7fb72a7d1a8e984ccd01277432de660162a547a00de77151518dc9033cfb8cb4",
"sha256:905dadf3a0ed88106f48ce02feca63f9b8cbdaf38713c0f090fdff68bc849708",
"sha256:d731454f914a582c05b53a9c0ff24018474965a8b77c231c376600b14c9a16af",
"sha256:79d7628d5b6b9722f4d4e8a2c9b5f33b778379018a6a24d74846194ca0b41ad1",
"sha256:25f5a412ea998dd0dc141beab46956253513b1c01d1f8f6ee5b88d04fe5945d7",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:23c9c1007db3c37e8669af7faeeb327fa43b15f6f457db1c964cf8c3246457a2",
"sha256:cc0d9f583491ba4405636091b57fce04cfaf34c40852c5b902ecce75c386b2c2",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:ce3c2f2c7cd4656df5a7d4c186cb3c515430b6ffbd238e36f03173bbb760c357",
"sha256:6802287c6f6e80f152f7fa15737ba5e7773d4d229ce9282be4ce718868e77ffb",
"sha256:1ab35f8c73dee0a128a02b381d502b11db4b7e9313e2f4dba9c506d4df7c8ac1",
"sha256:7c5bbf5bc9acecff48c8b093ff44510e8c34841ec8df3ccf0d7d6c3aa3e96702",
"sha256:067390499425ce5c7ad06a3ad29d301c70192e4343fc735eac17b511063b0953",
"sha256:bdadaf8c1685c84f0478829bb304fe69b753ec9ab467190036bdd86933f17a6b",
"sha256:d6eaaf5ba18ff90dac42bd9b1f87cf5ace70b30840c79c7e1ef2634e6f2a2e48"
]
},
"Metadata": {
"LastTagTime": "2025-06-17T03:34:27.116184105+08:00"
}
}