镜像构建历史
# 2025-08-02 23:41:34 0.00B 设置默认要执行的命令
CMD ["bash" "start.sh"]
# 2025-08-02 23:41:34 0.00B 设置环境变量 DOCKER
ENV DOCKER=true
# 2025-08-02 23:41:34 0.00B 设置环境变量 WEBUI_BUILD_VERSION
ENV WEBUI_BUILD_VERSION=00084c6ca6ee8e379a502799e4c32c708987f190
# 2025-08-02 23:41:34 0.00B 定义构建参数
ARG BUILD_HASH=00084c6ca6ee8e379a502799e4c32c708987f190
# 2025-08-02 23:41:34 0.00B 指定运行容器时使用的用户
USER 0:0
# 2025-08-02 23:41:34 0.00B 指定检查容器健康状态的命令
HEALTHCHECK &{["CMD-SHELL" "curl --silent --fail http://localhost:${PORT:-8080}/health | jq -ne 'input.status == true' || exit 1"] "0s" "0s" "0s" "0s" '\x00'}
# 2025-08-02 23:41:34 0.00B 声明容器运行时监听的端口
EXPOSE map[8080/tcp:{}]
# 2025-08-02 23:41:34 70.48MB 复制新文件或目录到容器中
COPY --chown=0:0 ./backend . # buildkit
# 2025-08-02 23:41:34 4.83KB 复制新文件或目录到容器中
COPY --chown=0:0 /app/package.json /app/package.json # buildkit
# 2025-08-02 23:41:34 220.00KB 复制新文件或目录到容器中
COPY --chown=0:0 /app/CHANGELOG.md /app/CHANGELOG.md # buildkit
# 2025-08-02 23:41:34 216.21MB 复制新文件或目录到容器中
COPY --chown=0:0 /app/build /app/build # buildkit
# 2025-08-02 18:06:20 9.28GB 执行命令并创建新的镜像层
RUN |7 USE_CUDA=true USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c pip3 install --no-cache-dir uv && if [ "$USE_CUDA" = "true" ]; then pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && uv pip install --system -r requirements.txt --no-cache-dir && python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; else pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && uv pip install --system -r requirements.txt --no-cache-dir && python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; fi; chown -R $UID:$GID /app/backend/data/ # buildkit
# 2025-08-02 18:04:15 2.50KB 复制新文件或目录到容器中
COPY --chown=0:0 ./backend/requirements.txt ./requirements.txt # buildkit
# 2025-07-22 15:23:23 1.02GB 执行命令并创建新的镜像层
RUN |7 USE_CUDA=true USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c if [ "$USE_OLLAMA" = "true" ]; then apt-get update && apt-get install -y --no-install-recommends git build-essential pandoc netcat-openbsd curl && apt-get install -y --no-install-recommends gcc python3-dev && apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && apt-get install -y --no-install-recommends curl jq && curl -fsSL https://ollama.com/install.sh | sh && rm -rf /var/lib/apt/lists/*; else apt-get update && apt-get install -y --no-install-recommends git build-essential pandoc gcc netcat-openbsd curl jq && apt-get install -y --no-install-recommends gcc python3-dev && apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && rm -rf /var/lib/apt/lists/*; fi # buildkit
# 2025-07-22 15:22:40 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=true USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c chown -R $UID:$GID /app $HOME # buildkit
# 2025-07-22 15:22:40 36.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=true USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c echo -n 00000000-0000-0000-0000-000000000000 > $HOME/.cache/chroma/telemetry_user_id # buildkit
# 2025-07-22 15:22:40 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=true USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c mkdir -p $HOME/.cache/chroma # buildkit
# 2025-07-22 15:22:40 0.00B 执行命令并创建新的镜像层
RUN |7 USE_CUDA=true USE_OLLAMA=false USE_CUDA_VER=cu128 USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL= UID=0 GID=0 /bin/sh -c if [ $UID -ne 0 ]; then if [ $GID -ne 0 ]; then addgroup --gid $GID app; fi; adduser --uid $UID --gid $GID --home $HOME --disabled-password --no-create-home app; fi # buildkit
# 2025-07-22 15:22:39 0.00B 设置环境变量 HOME
ENV HOME=/root
# 2025-07-22 15:22:39 0.00B 设置工作目录为/app/backend
WORKDIR /app/backend
# 2025-07-22 15:22:39 0.00B 设置环境变量 HF_HOME
ENV HF_HOME=/app/backend/data/cache/embedding/models
# 2025-07-22 15:22:39 0.00B 设置环境变量 TIKTOKEN_ENCODING_NAME TIKTOKEN_CACHE_DIR
ENV TIKTOKEN_ENCODING_NAME=cl100k_base TIKTOKEN_CACHE_DIR=/app/backend/data/cache/tiktoken
# 2025-07-22 15:22:39 0.00B 设置环境变量 RAG_EMBEDDING_MODEL RAG_RERANKING_MODEL SENTENCE_TRANSFORMERS_HOME
ENV RAG_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 RAG_RERANKING_MODEL= SENTENCE_TRANSFORMERS_HOME=/app/backend/data/cache/embedding/models
# 2025-07-22 15:22:39 0.00B 设置环境变量 WHISPER_MODEL WHISPER_MODEL_DIR
ENV WHISPER_MODEL=base WHISPER_MODEL_DIR=/app/backend/data/cache/whisper/models
# 2025-07-22 15:22:39 0.00B 设置环境变量 OPENAI_API_KEY WEBUI_SECRET_KEY SCARF_NO_ANALYTICS DO_NOT_TRACK ANONYMIZED_TELEMETRY
ENV OPENAI_API_KEY= WEBUI_SECRET_KEY= SCARF_NO_ANALYTICS=true DO_NOT_TRACK=true ANONYMIZED_TELEMETRY=false
# 2025-07-22 15:22:39 0.00B 设置环境变量 OLLAMA_BASE_URL OPENAI_API_BASE_URL
ENV OLLAMA_BASE_URL=/ollama OPENAI_API_BASE_URL=
# 2025-07-22 15:22:39 0.00B 设置环境变量 ENV PORT USE_OLLAMA_DOCKER USE_CUDA_DOCKER USE_CUDA_DOCKER_VER USE_EMBEDDING_MODEL_DOCKER USE_RERANKING_MODEL_DOCKER
ENV ENV=prod PORT=8080 USE_OLLAMA_DOCKER=false USE_CUDA_DOCKER=true USE_CUDA_DOCKER_VER=cu128 USE_EMBEDDING_MODEL_DOCKER=sentence-transformers/all-MiniLM-L6-v2 USE_RERANKING_MODEL_DOCKER=
# 2025-07-22 15:22:39 0.00B 定义构建参数
ARG GID=0
# 2025-07-22 15:22:39 0.00B 定义构建参数
ARG UID=0
# 2025-07-22 15:22:39 0.00B 定义构建参数
ARG USE_RERANKING_MODEL=
# 2025-07-22 15:22:39 0.00B 定义构建参数
ARG USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
# 2025-07-22 15:22:39 0.00B 定义构建参数
ARG USE_CUDA_VER=cu128
# 2025-07-22 15:22:39 0.00B 定义构建参数
ARG USE_OLLAMA=false
# 2025-07-22 15:22:39 0.00B 定义构建参数
ARG USE_CUDA=true
# 2025-06-04 07:02:53 0.00B 设置默认要执行的命令
CMD ["python3"]
# 2025-06-04 07:02:53 36.00B 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; for src in idle3 pip3 pydoc3 python3 python3-config; do dst="$(echo "$src" | tr -d 3)"; [ -s "/usr/local/bin/$src" ]; [ ! -e "/usr/local/bin/$dst" ]; ln -svT "$src" "/usr/local/bin/$dst"; done # buildkit
# 2025-06-04 07:02:53 45.82MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; savedAptMark="$(apt-mark showmanual)"; apt-get update; apt-get install -y --no-install-recommends dpkg-dev gcc gnupg libbluetooth-dev libbz2-dev libc6-dev libdb-dev libffi-dev libgdbm-dev liblzma-dev libncursesw5-dev libreadline-dev libsqlite3-dev libssl-dev make tk-dev uuid-dev wget xz-utils zlib1g-dev ; wget -O python.tar.xz "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz"; echo "$PYTHON_SHA256 *python.tar.xz" | sha256sum -c -; wget -O python.tar.xz.asc "https://www.python.org/ftp/python/${PYTHON_VERSION%%[a-z]*}/Python-$PYTHON_VERSION.tar.xz.asc"; GNUPGHOME="$(mktemp -d)"; export GNUPGHOME; gpg --batch --keyserver hkps://keys.openpgp.org --recv-keys "$GPG_KEY"; gpg --batch --verify python.tar.xz.asc python.tar.xz; gpgconf --kill all; rm -rf "$GNUPGHOME" python.tar.xz.asc; mkdir -p /usr/src/python; tar --extract --directory /usr/src/python --strip-components=1 --file python.tar.xz; rm python.tar.xz; cd /usr/src/python; gnuArch="$(dpkg-architecture --query DEB_BUILD_GNU_TYPE)"; ./configure --build="$gnuArch" --enable-loadable-sqlite-extensions --enable-optimizations --enable-option-checking=fatal --enable-shared $(test "$gnuArch" != 'riscv64-linux-musl' && echo '--with-lto') --with-ensurepip ; nproc="$(nproc)"; EXTRA_CFLAGS="$(dpkg-buildflags --get CFLAGS)"; LDFLAGS="$(dpkg-buildflags --get LDFLAGS)"; LDFLAGS="${LDFLAGS:--Wl},--strip-all"; make -j "$nproc" "EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" "LDFLAGS=${LDFLAGS:-}" ; rm python; make -j "$nproc" "EXTRA_CFLAGS=${EXTRA_CFLAGS:-}" "LDFLAGS=${LDFLAGS:--Wl},-rpath='\$\$ORIGIN/../lib'" python ; make install; cd /; rm -rf /usr/src/python; find /usr/local -depth \( \( -type d -a \( -name test -o -name tests -o -name idle_test \) \) -o \( -type f -a \( -name '*.pyc' -o -name '*.pyo' -o -name 'libpython*.a' \) \) \) -exec rm -rf '{}' + ; ldconfig; apt-mark auto '.*' > /dev/null; apt-mark manual $savedAptMark; find /usr/local -type f -executable -not \( -name '*tkinter*' \) -exec ldd '{}' ';' | awk '/=>/ { so = $(NF-1); if (index(so, "/usr/local/") == 1) { next }; gsub("^/(usr/)?", "", so); printf "*%s\n", so }' | sort -u | xargs -r dpkg-query --search | cut -d: -f1 | sort -u | xargs -r apt-mark manual ; apt-get purge -y --auto-remove -o APT::AutoRemove::RecommendsImportant=false; rm -rf /var/lib/apt/lists/*; export PYTHONDONTWRITEBYTECODE=1; python3 --version; pip3 install --disable-pip-version-check --no-cache-dir --no-compile 'setuptools==65.5.1' 'wheel<0.46' ; pip3 --version # buildkit
# 2025-06-04 07:02:53 0.00B 设置环境变量 PYTHON_SHA256
ENV PYTHON_SHA256=8fb5f9fbc7609fa822cb31549884575db7fd9657cbffb89510b5d7975963a83a
# 2025-06-04 07:02:53 0.00B 设置环境变量 PYTHON_VERSION
ENV PYTHON_VERSION=3.11.13
# 2025-06-04 07:02:53 0.00B 设置环境变量 GPG_KEY
ENV GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D
# 2025-06-04 07:02:53 9.25MB 执行命令并创建新的镜像层
RUN /bin/sh -c set -eux; apt-get update; apt-get install -y --no-install-recommends ca-certificates netbase tzdata ; rm -rf /var/lib/apt/lists/* # buildkit
# 2025-06-04 07:02:53 0.00B 设置环境变量 LANG
ENV LANG=C.UTF-8
# 2025-06-04 07:02:53 0.00B 设置环境变量 PATH
ENV PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# 2025-06-04 07:02:53 74.81MB
# debian.sh --arch 'amd64' out/ 'bookworm' '@1753056000'
镜像信息
{
"Id": "sha256:7fccc21cc0a7006947add0544b9492cfa762d4380af8a9821d31ad0626ebed94",
"RepoTags": [
"ghcr.io/open-webui/open-webui:git-00084c6-cuda",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/open-webui/open-webui:git-00084c6-cuda"
],
"RepoDigests": [
"ghcr.io/open-webui/open-webui@sha256:58b45f6a795be3ac0a986da342dc5b13559794fe099ec691f5cb12b2f71a8c35",
"swr.cn-north-4.myhuaweicloud.com/ddn-k8s/ghcr.io/open-webui/open-webui@sha256:8428a89022a956f1ddb507ba23940ac2e1871e2cbc4a7c75315de7a4ea1cb24d"
],
"Parent": "",
"Comment": "buildkit.dockerfile.v0",
"Created": "2025-08-02T15:41:34.938978695Z",
"Container": "",
"ContainerConfig": null,
"DockerVersion": "",
"Author": "",
"Config": {
"Hostname": "",
"Domainname": "",
"User": "0:0",
"AttachStdin": false,
"AttachStdout": false,
"AttachStderr": false,
"ExposedPorts": {
"8080/tcp": {}
},
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": [
"PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"LANG=C.UTF-8",
"GPG_KEY=A035C8C19219BA821ECEA86B64E628F8D684696D",
"PYTHON_VERSION=3.11.13",
"PYTHON_SHA256=8fb5f9fbc7609fa822cb31549884575db7fd9657cbffb89510b5d7975963a83a",
"ENV=prod",
"PORT=8080",
"USE_OLLAMA_DOCKER=false",
"USE_CUDA_DOCKER=true",
"USE_CUDA_DOCKER_VER=cu128",
"USE_EMBEDDING_MODEL_DOCKER=sentence-transformers/all-MiniLM-L6-v2",
"USE_RERANKING_MODEL_DOCKER=",
"OLLAMA_BASE_URL=/ollama",
"OPENAI_API_BASE_URL=",
"OPENAI_API_KEY=",
"WEBUI_SECRET_KEY=",
"SCARF_NO_ANALYTICS=true",
"DO_NOT_TRACK=true",
"ANONYMIZED_TELEMETRY=false",
"WHISPER_MODEL=base",
"WHISPER_MODEL_DIR=/app/backend/data/cache/whisper/models",
"RAG_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2",
"RAG_RERANKING_MODEL=",
"SENTENCE_TRANSFORMERS_HOME=/app/backend/data/cache/embedding/models",
"TIKTOKEN_ENCODING_NAME=cl100k_base",
"TIKTOKEN_CACHE_DIR=/app/backend/data/cache/tiktoken",
"HF_HOME=/app/backend/data/cache/embedding/models",
"HOME=/root",
"WEBUI_BUILD_VERSION=00084c6ca6ee8e379a502799e4c32c708987f190",
"DOCKER=true"
],
"Cmd": [
"bash",
"start.sh"
],
"Healthcheck": {
"Test": [
"CMD-SHELL",
"curl --silent --fail http://localhost:${PORT:-8080}/health | jq -ne 'input.status == true' || exit 1"
]
},
"ArgsEscaped": true,
"Image": "",
"Volumes": null,
"WorkingDir": "/app/backend",
"Entrypoint": null,
"OnBuild": null,
"Labels": {
"org.opencontainers.image.created": "2025-08-02T15:37:06.472Z",
"org.opencontainers.image.description": "User-friendly AI Interface (Supports Ollama, OpenAI API, ...)",
"org.opencontainers.image.licenses": "NOASSERTION",
"org.opencontainers.image.revision": "00084c6ca6ee8e379a502799e4c32c708987f190",
"org.opencontainers.image.source": "https://github.com/open-webui/open-webui",
"org.opencontainers.image.title": "open-webui",
"org.opencontainers.image.url": "https://github.com/open-webui/open-webui",
"org.opencontainers.image.version": "dev-cuda"
}
},
"Architecture": "amd64",
"Os": "linux",
"Size": 10718669444,
"GraphDriver": {
"Data": {
"LowerDir": "/var/lib/docker/overlay2/e7741693221051c59263e0fabcc3d7a439bc7fc1d63b6d8b3a91d85720779ebd/diff:/var/lib/docker/overlay2/a1d5be34f3250010708a21c390c128e25fa10cd1aefaabbfb7bf0127e1482fa0/diff:/var/lib/docker/overlay2/71f24896d71f3e0c4656af5def576cc3bd32adf42d425fd583901365e656011d/diff:/var/lib/docker/overlay2/3ae1e72e02a6a06d886d5acff01451c0fd53bdfeff9cbb5e98e4e6b419699613/diff:/var/lib/docker/overlay2/a92014312359b2c9ef44f4cfcd676e77c046dc626ec7d8f328ab3052070f70bc/diff:/var/lib/docker/overlay2/1f6f2fb4f3d71b7365ac48fe50526e3e49a6eb2a6cef794fb98d1e560806be9f/diff:/var/lib/docker/overlay2/02afa0e47160b7797abe84338f1c8bc1e0381af8e6fd7874fc0f775ce5744448/diff:/var/lib/docker/overlay2/23c332146d15028e137b6968749b28da88aa3f0b329c45e372e8d28073c12e13/diff:/var/lib/docker/overlay2/f0806bf9640c58d1ffb52f902e3943ec20ac6a6f415fd3ac08589976f0907e21/diff:/var/lib/docker/overlay2/f0c022b544b83c8ec5655371111ac91da1b375fac441dff2cbac9177a96411ed/diff:/var/lib/docker/overlay2/7e20b3f43ae734f4b8cec4dd39d4b715c997e794ac7dc9a9e37aad150be24077/diff:/var/lib/docker/overlay2/76343414284af74e676e3abab61cd61fe5712d07e0d2a3d12bb18de49a2dd682/diff:/var/lib/docker/overlay2/36dd6e00be0226189c499a184710f3143898cff2e280f288a345100de31eb8ab/diff:/var/lib/docker/overlay2/17f14bdc317fd096b14d30a469fb128294556f900d7efda142b46a3d9e4923d8/diff:/var/lib/docker/overlay2/78f84327c675385035d735018d8f3e092b1a95be91b6e02564557eb58a1c2945/diff",
"MergedDir": "/var/lib/docker/overlay2/8a07f9cda8f6f0425402c037b93fa1c881ee4ac83cf5bcc728aae2af9045f840/merged",
"UpperDir": "/var/lib/docker/overlay2/8a07f9cda8f6f0425402c037b93fa1c881ee4ac83cf5bcc728aae2af9045f840/diff",
"WorkDir": "/var/lib/docker/overlay2/8a07f9cda8f6f0425402c037b93fa1c881ee4ac83cf5bcc728aae2af9045f840/work"
},
"Name": "overlay2"
},
"RootFS": {
"Type": "layers",
"Layers": [
"sha256:7cc7fe68eff66f19872441a51938eecc4ad33746d2baa3abc081c1e6fe25988e",
"sha256:0a00f6ce5fb79b48aa2968e84067a2804f848097e274b172e587a1f8a769187f",
"sha256:943faa7467a0e21a2f91457021f49f601f064076f4a9a9986476bdad86e683d4",
"sha256:d22cc68b10d77da233d72061754d722e59f22e87748b57c0da281b45a5b2a60e",
"sha256:7c200eee77d0b52c9c48e65174204ad2cd7e7eaab97453b7df8a20d0569afd60",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:730541912e602e1628ad2ba6a93f9671259e0bd486b97388989233d0434a7893",
"sha256:173275e0b108d9fb2681f071a1b37d2986a1a20b0eb3dc543907d5430d02597c",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:aedc322dbefdfcf757cb8c99d971050299bd489b279dd735d6759f896f73fbd5",
"sha256:c04a2ddbbfda43577b7e808e712fc0578c414df02274061ca73179ac6897e856",
"sha256:3cff7087460ccf198f8f321296d17726c78000c5d96b9c1853c5461bec13087a",
"sha256:d2ae2614c65186fba0d4158cedc11dcea6e4da79fd85ed17d65590c04f9547e6",
"sha256:ceea171b0e0c353a28983ad97c0c12a4f00db5d3af02cfc58b3c8f9557426892",
"sha256:5eae01e8959db70e9a9b8db4af5f426a69b591f4c00c9e21b867069c79443c88",
"sha256:f93ad7dfaed5451df3549eb8885b476ce774358535ae3903b0b6ff2f8e735011"
]
},
"Metadata": {
"LastTagTime": "2025-08-04T01:23:35.059221257+08:00"
}
}